勉強しようNTTのBlog - 2011/09

算数の問題と解答とを考えていきます。




2011年09月20日(Tue)▲ページの先頭へ
3次方程式が重根を持つ条件
「微分・積分」の勉強

以下の問題は、微分の基礎知識を勉強した後で解いてください。

【難問】三次の方程式
+ax+b=0 (式1)
の根が重根を持つ場合に、パラメータaとbの間に成り立つ関係を求めよ。
(注意:どの3次方程式も変数を変換することでこの形の式に帰着できる)


(解答の方針)
この問題は、
方程式
f(x)=0 (式2)
が重根を持つ場合に以下の関係が成り立つという知識が無いと解くのがとても難しい問題ではないかと思います。

方程式2の重根の解x=αにおいて、
f’(α)=0 (式3)
が成り立つ。
すなわち、方程式2を微分した方程式の解も、その重根の解x=αと同じ解を持つ。
これは、以下のようにして証明できます。
(証明開始)
f(x)=(x−α)g(x)
という式であるとすると、この式を微分すると以下の式が得られる。
f’(x)=2(x−α)g(x)+(x−α)g’(x)
=(x−α){2g(x)+(x−α)g’(x)}
よって、
f’(α)=0 (式3)
が成り立つ。
(証明終わり)

そのため、
f(x)=x+ax+b=0 (式1)
の根が重根を持つ場合に、
f’(x)=3x+a=0 (式4)
の根の1つが、式1の根と等しい。
そのため、
式1と式4を連立させて、両式がともに成り立つxの値が、式1の重根である。
この公式を知っていれば、この問題は解ける。

【解答1】
(1)
f(x)=x+ax+b=0 (式1)
の根が重根を持つ場合に、
f’(x)=3x+a=0 (式4)
の根の1つが、式1の根と等しい。
そのため、
式1と式4を連立させて、両式がともに成り立つxの値が、式1の重根である。
(2)
3(式1)−(式4)xを計算する。
3x+3ax+3b−(3x+ax)=0
3ax+3b−ax=0
2ax+3b=0 (式5)
(3)
a≠0の場合は、
x=−3b/(2a) (式6)
このxの値が重根である。
(4)
a=0の場合は、
式5より、
b=0
すなわち、a=b=0の場合に、式1も式4もx=0を解に持つ。
(5)
式6のxの値を式4に代入する。
3(−3b/(2a))+a=0
(27/4)(b/a)+a=0
27b+4a=0 (式7)
式7は、a=b=0の場合も含んでいる。
(6)
式6のxの値を式1に代入する。
(−3b/(2a))+a(−3b/(2a))+b=0
−(27/8)(b/a)−(3/2)b+b=0
−(27/8)(b/a)−(1/2)b=0 
−27(b/a)−4b=0
27(b/a)+4b=0
27b+4ba=0
b(27b+4a)=0
b=0
or
27b+4a=0 (式7)
再び式7を得た。
(7)
よって、パラメータaとbの間に成り立つ関係は、 
27b+4a=0 (式7)
である。おぼえ易い式に変形すると、
(b/2)+(a/3)=0 (式7’) 
これが、式1が重根(3重根も重根の一種として)を持つ条件である。
(解答おわり)

【解答2】 
 式1が重根を持つ場合は、式fと、それを微分した式f’≡gが共通因数を持つ。
 共通因数を持つ式fと式gをユークリッドの互除法で余りを計算すると、余りの式は割り切れる結果、余りの定数項が0になる。
そのため、以下のように、ユークリッドの互除法で余りの定数項を計算する。
(1)先ず、f’≡gを計算する。
このfをgで割り算した余りの式hを計算する。
 次にgをhで割り算した余りの定数項の式kを計算する。
(ただし、a≠0とする)

fとgが共通因数hを持つので、式gはhで割り切れ、余りの定数項kは0になる。
よって、以下の式が成り立つ。
解答1で求めた解の式7と同じ式a−5が得られた。
(a=0の場合)
 重根を持つ条件は、b=0である。
これは、式a−5に当てはまっている。
その場合にx=0で3重根を持つ。
(解答おわり)

(コメント)
ここで、3次方程式1の判別式Dは、
D≡−(b/2)−(a/3)
であり、
D=0の場合に式1は重根を持ち、
D>0の場合に式1は3つの実数根を持つ。

この判別式Dは、以下の様にすると思い出し易い。
式1をyとして、
yの微分に−1を掛けた式8を考える。
そして、その式8のxに、
式1が重根を持つ場合には重根の絶対値をあらわす
を代入して式9を計算する。
その式9:
yの微分に−1を掛けた式≧0
が、式1の根が全て実数になる条件式であると覚える
と、判別式Dを思い出し易い。

この式9を展開すると以下の式10になります。
この式10を以下の様に変形することで判別式Dが導き出せます。
 こうして、式11の判別式Dが導き出せた。
(参考)
「3次方程式で1つの根がわかっている場合の残りの根」

リンク:
三次方程式の判別式
高校数学の目次




2011年09月18日(Sun)▲ページの先頭へ
円と放物線の接線(4)
「微分・積分」の勉強

なめらかな曲線の接線は、微分によって初めて正しく定義できる。
接線を求める式に重根が含まれるとは限らない。

【問1】放物線
y=2−2x (式1)
とX軸で囲まれる範囲(x軸より上の範囲)にある円の半径の最大値を求めよ。

(解答の方針)
この問題で求める円は、式1の放物線とX軸とに接する円です。
その円は放物線と同じくY軸に関して対称(すなわち、Y軸上に中心がある)と考えられます。

その理由は、
もし、その円の中心がY軸上になければ、Y軸に関して全図形を左右に反転すれば、円の中心位置が左右に移動します。

放物線に接する円が左右に移動してしまったら、上図のように、円は放物線に接する位置から離れて、放物線に交わったり放物線から離れてしまったりします。

そのため、Yに関して全図形を左右に反転しても円が放物線に左右で接する形であるためには、円の中心はY軸上になければなりません。

求める円の中心がY軸上にあると考えると問題が大分簡単になります。

次に、考えることは、円と放物線が接する条件を求めることです。
なめらかな曲線の接線は、微分によって初めて正しく定義できるので、微分により接線の式を計算して方程式を書きます。

(解答)
(1)
放物線の式は
y=2−2x (式1)
であり、
X軸の式は
y=0 (式2)
である。
(2)
式1の放物線とX軸で囲まれる範囲にある最大の半径の円は、式1の放物線と左右で接して、円の下がX軸に接する円と考えられる。

全図形をY軸に関して左右に反転しても、その円は放物線に左右で接する形であるが、
もし、左右に反転すると円の中心が左右に移動すると考えると円が放物線から離れたり放物線に交わったりして、放物線とX軸で囲まれる範囲にある最大の半径の円である条件から外れてしまい矛盾する。

よって、全図形を左右に反転しても円の中心は左右に移動しない。すなわち、円の中心はY軸上にある。
よって、x軸に接する半径rの円の式は以下の式であらわされる。
(y−r)+x=r (式3)
(注意)
半径のつもりで、rというパラメータを導入しましたが、rというパラメータは、x軸より上の円では正になり、x軸より下の円では負になる。x軸に接する円がx軸の上か下かどちら側にあるかをあらわすパラメータであるという意味を持っていることに注意すべき。


(3)
求める円は、式1の放物線と接する円と考えられるので、
先ずは、円と放物線が接し得る接点を全て求める。

(4)
放物線と円の接点をA(a,h)とする。
式1から、
放物線 h=2−2a  (式4)
式3から、
円 (h−r)+a=r (式5)

(5)
式1の放物線の接点(a,h)における接線の傾きは、式1の関数をxで微分して計算し、
−4a

式3の円の接点(a,h)における接線の傾きは、
円の法線の傾き(h−r)/aの逆数に(−1)を掛け算したものであって、
−a/(h−r) 

この2つの接線の傾きが等しいので、
−4a=−a/(h−r)
a{−4+(1/(h−r))}=0 (式6)
この式6(接点の座標の式)を解くと、
a=0 (式7)
or
h−r=1/4
h=r+1/4 (式8)

(6)
(式7(a=0)があらわす接点の座標を求める)
式7を放物線の式4に代入する。
h=2 (式9)
よって、1つの接点(a,h)=(0,2)が得られた。
この接点は式1があらわす放物線の頂点である。
この接点に接する円の半径r=1である。

(7)
(式8があらわす接点の座標を求める)
そのために、式8と式4と式5を連立して、接点の座標を導く。
(8) 

計算間違いを少なくするために、単純な式を早く作る。
そのために、先ず、式4と式5を整理して、aを消去して単純な式を得る。
式4から、
h−2+2a=0 (式4’)
式5から、
(h−r)+a−r=0 (式5’)
2×式5’−式4’を計算してaを消去する。
2(h−r)−2r−(h−2)=0
2h−4hr−h+2=0 (式9)
式9に代入すべき式8を変形する。
r=h−(1/4) (式8’)
式8’を式9に代入してrを消去する。
2h−4h(h−(1/4))−h+2=0
2h−4h+h−h+2=0
−2h+2=0
−1=0
(h−1)(h+1)=0
h=1
or
h=−1
h=−1は、x軸よりも下のy座標であるので、接点の座標として不適。
よって、
h=1 (式10) 

のみが有効。
式10を式8’に代入する。
r=1−(1/4)=3/4
また、式10を式4’に代入する。
1−2+2a=0
2a=1
=1/2
a=±(√2)/2 (式11)
よって、半径r=3/4の円について、
2つの接点(a,h)=A(√2/2,1)とB(−√2/2,1)が得られた。


(9)
以上で得た、円が放物線と接し得る点を全て列挙すると:
(9−1);
放物線の頂点(0,2)が接点になるとき、円の半径r=1
である。
(9−2);
A(√2/2,1)とB(−√2/2,1)が接点になるとき、
円の半径r=3/4
である。
(10)
しかし、半径r=3/4の円において既に放物線に接しているので、
(9−1)の場合の、円の半径が1になって放物線の頂点に円が接する場合には、円は、その他の点で放物線と交差していて、放物線の下には収まりきれていない。

 よって、(9−2)の場合のみが有効な解であり、放物線の下に収まりきれる最大の円の半径は、
r=3/4
である。
(解答おわり)

リンク:
高校数学の目次




2011年09月09日(Fri)▲ページの先頭へ
友人リンク集
リンク:
(技術分野)
技術美探究会のサイト

匠(熟練者)の作製物・設計物における「美しさ」を追求し、技術・技能・知恵・知識を高めることを目ざし、企画を進めている。


(子供のしつけがとても良い友人)
浪速の龍のブログ




2011年09月04日(Sun)▲ページの先頭へ
接線と放物線の交点
佐藤の数学教科書「微分」編の勉強

なめらかな曲線の接線は、微分によって初めて正しく定義できる。
(接線を求める式に重根が含まれるとは限らない。)

【問1】放物線
y= x+1 (式1)
上の任意の点Pにおける接線が、放物線
y=x (式2)
と交わる点をQ,Rとするとき、次のことが成り立つことを示せ。
Pは線分QRの中点である。


(解答の方針)
式1の放物線上の点P(p,p+1)での接線の式をあらわし、
その接線点の式と式2とを連立させて、交点Q,Rの座標を計算する式を求めれば良い。
ただし、問題の解き方も工夫する。

(解答)
式1を微分して式1のグラフの傾きを求める。
y’= 2x
P(p,p+1)での傾きy’は、
y’= 2p (式3)
式1の放物線上の点P(p,p+1)での接線の式は以下の式になる。
y−(p+1)=y’(x−p)
y=y’(x−p)+(p+1)
この式に式3を代入して、y’を式3の右辺で置き換える。
y=2p(x−p)+(p+1) (式4)
式4と式2を連立して、接線と式2の放物線の交点Q,Rの座標を求める式を計算する。
=2p(x−p)+(p+1)
−2px+p−1=0 (式5)
ここで問題の解き方を工夫する。
根と係数の関係により、交点Q,Rのx座標をqとrとすると、式5のxの係数との間に以下の関係が成り立つ。
2p=q+r
p=(q+r)/2
これは、接線上の点Pのx座標が、点QとRの中点のx座標であることを意味する。
∴ Pは線分QRの中点である。
(解答おわり)

リンク:
ミラーサイト
高校数学の目次




2011年09月01日(Thu)▲ページの先頭へ
楕円と円の接点
「大学への数学VC」の勉強

【研究問題】
座標原点を中心にする楕円
と、円A
とが接する接点Pにおける接線を、 
接点Pから円Aの中心に向かう単位ベクトルC(x,y)に垂直な直線の式、
であらわされるものとした場合に、
(1)その接線と楕円の中心の距離mの値を求めよ。
(2)円Aの中心の座標A(x,y)の値をx,y,m,rであらわす式を求めよ。

(解答)
以下では、この問題を、単位ベクトルC(x,yの値が先に分かっている場合から始めて解く。

楕円
に接する直線は、単位ベクトルC(x,y)に垂直な直線であり、接点:
での接線の式は、楕円の接線の公式により、
である。
この接線の式が式3と等しいとして、以下の式4を導く。
式4の座標値を式3に代入して以下の計算をすることで式5が得られる。
式5により、楕円の中心と直線との距離mをxとyから計算することができる。
mの値は、正の値と負の値との2つです。
式3のmが、この式5で得られる。

円Aの中心の座標A(x,y)の値は以下の式であらわせる。
 
このように、最初に、楕円への接線に垂直な単位ベクトルC(x,y)がわかれば、他のパラメータが簡単に計算できる。

 しかし、他のパラメータから、,yを計算しようとすると簡単ではありません。
例えば、xを他のパラメータから計算する式を、以下で求めてみます。
式6aを変形する。

mに式5を代入してmを消去する。
単位ベクトルCの成分の関係式
を用いて、yをxであらわす。
この式はに関する4次方程式である。
すなわち、
を他のパラメータから計算しようとすると、4次方程式の解を求める問題に帰着する。
この4次方程式の解は簡単には解けない。その解を得るには、EXCEL等を利用して近似解を計算するしかない。
よって、
を他のパラメータから計算する問題は入学試験などの試験には出題されない。
(たまたま簡単に解ける4次方程式になる場合だけが試験に出題され得るだろう。)

リンク: 
高校数学の目次




   




新着トラックバック/コメント


カレンダ
2011年9月
       
 

アーカイブ
2009年 (56)
2月 (1)
3月 (14)
4月 (30)
5月 (11)
2010年 (31)
7月 (1)
8月 (17)
9月 (4)
10月 (7)
11月 (1)
12月 (1)
2011年 (105)
1月 (10)
2月 (11)
3月 (16)
4月 (31)
5月 (4)
7月 (12)
8月 (12)
9月 (5)
11月 (3)
12月 (1)
2012年 (28)
1月 (3)
2月 (8)
3月 (6)
4月 (8)
5月 (1)
7月 (2)
2013年 (149)
1月 (12)
2月 (36)
7月 (5)
8月 (7)
9月 (22)
10月 (26)
11月 (25)
12月 (16)
2014年 (27)
1月 (13)
2月 (12)
3月 (2)
2015年 (47)
1月 (1)
2月 (6)
3月 (8)
4月 (16)
5月 (11)
6月 (4)
12月 (1)
2016年 (55)
4月 (4)
8月 (4)
9月 (6)
10月 (6)
11月 (22)
12月 (13)
2017年 (115)
1月 (10)
2月 (2)
3月 (5)
4月 (5)
5月 (10)
6月 (13)
7月 (15)
8月 (12)
9月 (17)
10月 (23)
11月 (3)

アクセスカウンタ
今日:504
昨日:1,132
累計:1,998,420