勉強しようNTTのBlog - 2017/03

算数の問題と解答とを考えていきます。




2017年03月21日(Tue)▲ページの先頭へ
二項定理に関連する公式
二項定理は、例えば:
(x+1)
を展開した各項の係数が以下の式であらわされるという定理です。

x=1とおけば、上の式1のように、2が組合わせの数の和であらわされます。
上のように式1が得られたので、この式1を覚えろと言われます。

しかし、数学のセンスのある学生ならば、ここで、何となくうさんくさく感じて、素直にはこの式1を覚える気にはならないと思います。
(そのうさんくささを感じる嗅覚が数学的センスです)
この公式がうさんくさいので、先ずは、具体的な場合を調べて、本当に式1が成り立つのかを具体的に調べます。
何と!全部成り立っているではないですか。

しかし、それでも納得いかないので、この式1が別の方法で証明できるならばこの式1を覚えても良いと考え、別の証明方法が無いか調べてみます。
(その調査をすることが数学を勉強するということだと考えます)

そのために、組合せの数の式の定義を使ってこの式1を証明する方法を探してみます。
先ず、 組合せの数の式の変形可能性を調べます。
上のように、組合せの数には、式2の関係があることを確認できました。
(この式2は覚えておきましょう)
この式2を使って、もう少し調べてみます。
この式3も成り立つことが分かりました。
この式3を使うことで、組合せの数を、そのパラメータnをどんどん減らした式に変換でき、下の図の関係があります。
(便利なので、この式3を覚えましょう)
下図では、各行の各が、式3に従って、その下の行の2つの項の和であらわされます。
上の図で、下方の行の各項が上方の行で2回使われています。そのため、上方の行の値は下方の行の値の2倍です。
それゆえ、式1が成り立ちます。
(式1の証明おわり)

こうしたやり方で、
「納得した後で初めて式1を覚えることにする。」
という勉強方法は間違っていないと私は考えます

リンク:
高校数学の目次



2017年03月20日(Mon)▲ページの先頭へ
二項定理
二項定理は、例えば:
(x+1)
を展開した各項の係数が以下の式であらわされるという定理です。

の係数は、(x+1)の6つの項の積において掛け合わされる数の組み合わせが2個あるうちの、xを2つ選ぶ組合せの数=6*5/(2*1)になります。

リンク:
高校数学の目次



2017年03月15日(Wed)▲ページの先頭へ
当ブログは共謀罪法案の提出に反対します
共謀罪法案が閣議決定されようとしています。
当ブログは共謀罪法案の提出に反対します。

共謀罪法案は、内心を罰する法案であり、
科学の批判精神に敵対するものだからです。

当ブログは、日本の学生の数学の学力向上をめざして、
数学教育に努めてきましたが、

共謀罪の成立によって、
当ブログがこれまで行なってきた科学教育の努力が
全て無駄になってしまいます。

そのため、当ブログは、共謀罪法案の提出に反対します。
 


2017年03月13日(Mon)▲ページの先頭へ
ベクトルを分解する道を視線でたどって式を書く
・ベクトルを分解する道を視線でたどって式を書く。
以下のようにベクトルAEを分解する道AOEを視線でたどります。

@は、視線がベクトルaを逆向きにたどったのでマイナス”−”
Aは、順向きなので”+”

 ベクトルAEのAからの道AOの向きがベクトルaと逆方向に進むことを確認してベクトルaにはマイナスを付けてベクトルAEの展開式を書くようにします。
 こうすることで、思い込みによりベクトルaの符号をプラスにして式を書いてしまうミスを防げます。


リンク:
高校数学の目次



2017年03月10日(Fri)▲ページの先頭へ
ユークリッドの互除法で最大公約多項式を求める
(2つの多項式の最大公約多項式を求める問題)

 次数の大きい方の多項式 f を、次数の小さい方の多項式 g で割り算して余りの多項式を求め、その余りの多項式で次数の小さい方の多項式 g を割り算する。
こうして、少しづつ式の次数を小さくしていき、最後に式が割り切れた場合に、その最小の次数の式が、最大公約多項式です。

 この手順で最大公約多項式を求める方法を、ユークリッドの互除法と呼びます。

【例題1】
以下の多項式 f と g の最大公約多項式を求めよ。

【解答】
 この場合は、多項式 f が、多項式 g で割り切れましたので、多項式 g が最大公約多項式です。
(解答おわり) 

(補足)
 ユークリッドの互除法で、多項式を多項式で割り算していくと、最終的な余りが定数になります。
(1)その余り定数が0の場合は、その0を余りにするように、多項式を割り切った式が、最大公約多項式です。
(2)その余り定数が0で無い場合は、最大公約多項式は存在しない。あえて言えば、最大公約多項式は「定数」である。

【例題2】
以下の多項式 f と g の最大公約多項式を求めよ。

【解答】
多項式 f を、多項式 g で割り算して余りの式=2hを得ました。
次に、 多項式 g を、多項式 h で割り算します。
この場合は、多項式 g が、多項式 h で割り切れましたので、多項式 h が多項式 f と多項式 g の最大公約多項式です。
(解答おわり)

リンク:
高校数学の目次



   




新着トラックバック/コメント


カレンダ
2017年3月
     
 

アーカイブ
2009年 (56)
2月 (1)
3月 (14)
4月 (30)
5月 (11)
2010年 (31)
7月 (1)
8月 (17)
9月 (4)
10月 (7)
11月 (1)
12月 (1)
2011年 (105)
1月 (10)
2月 (11)
3月 (16)
4月 (31)
5月 (4)
7月 (12)
8月 (12)
9月 (5)
11月 (3)
12月 (1)
2012年 (28)
1月 (3)
2月 (8)
3月 (6)
4月 (8)
5月 (1)
7月 (2)
2013年 (149)
1月 (12)
2月 (36)
7月 (5)
8月 (7)
9月 (22)
10月 (26)
11月 (25)
12月 (16)
2014年 (27)
1月 (13)
2月 (12)
3月 (2)
2015年 (47)
1月 (1)
2月 (6)
3月 (8)
4月 (16)
5月 (11)
6月 (4)
12月 (1)
2016年 (55)
4月 (4)
8月 (4)
9月 (6)
10月 (6)
11月 (22)
12月 (13)
2017年 (58)
1月 (10)
2月 (2)
3月 (5)
4月 (5)
5月 (10)
6月 (13)
7月 (13)

アクセスカウンタ
今日:1,446
昨日:3,510
累計:1,671,142