勉強しようNTTのBlog - 2017/06

算数の問題と解答とを考えていきます。




2017年06月30日(Fri)▲ページの先頭へ
楕円同士が接触する問題の解き方
数V 「いろいろな曲線」
エクセル表計算ソフトの勧め

楕円の式は数Vで学びます。
回転した楕円の式もあらわせます。

【問題】
以下の式1の楕円と式2の楕円が接するようにβを定めよ。

【解答1】
下図は、2つの楕円のグラフをエクセル表計算ソフトを使って、散布図グラフであらわしたグラフです。

 とにかく楽に問題を解く方法を探すのが「数学の心」 なので、
エクセル表計算ソフトを使えば問題を解くのが楽になるなら、
そのソフトを大いに使うべきです。

 上の楕円の中心のY座標 β を少しづつ変えて、楕円同士が接触する場合の楕円の中心のY座標 β を求めてみます。
 エクセル表計算ソフトを使って、
2つの楕円が接触する場合が、近似的に、
β=3.35
の場合であることを求めることができました。

式1の楕円と式2の楕円の寸法を定めてから、解の β を計算しようとすると:
(1)図形が交差する条件を表した4次方程式を書いて、
(2)次に、図形が接する条件を表した3次方程式を書いて、
(3)両方の方程式が共通する解を持つものとして、ユークリッドの互除法で、順次に方程式の次数を下げていき、最後に β のみの式を求める。
 この方法で β の条件をあわらす方程式を計算するのは、(3)の計算をしているうちに、βの式がどんどん複雑になって、とても処理しきれない、大変難しい問題でした。

 それに対して、円の寸法を定めずに、
(1)図形の接点Aを定める。
(2)A点での接線の傾きを求める。
(3)そのA点で接する円の寸法と円の中心座標を計算する。
方法ならば、スムーズに計算が進みます。
以下に、この方法で解く計算手順を書きます。

【解答2】
 以下の式2の楕円の形を変えるパラメータ r を導入する。そして接点Aのx座標を定め、その接点Aで楕円2が楕円1に接触するように種々のパラメータを定める式を計算することにする。
すなわち、楕円同士の接点Aのx座標をαとした場合の各パラメータを計算する式を以下で求める。

(1)先ず、楕円1の接点での傾きの式を求める。
式1×8:
(2)次に、楕円2の接点での傾きの式を求める。
式2×4:
(3)楕円1と2の接点Aでの傾きが等しいとする。
この式9は、パラメータβを接点のx座標とy座標から計算する式である。
(4)次に、楕円1の接点AでのY座標を計算する。

この式10は、接点AのY座標を計算する式である。
このうち、楕円2が一番高い位置で楕円2に接する場合をあらわす以下の式11を採用する。
(5)次に、接点Aで接する楕円2の寸法のパラメータ r を接点Aの座標で表す式を計算する。
以上の計算で得た、接点Aのx座標αを最初に決めた場合に、その接点Aで楕円1と2が接する場合の各パラメータを与える式を以下に整理する。
 接点Aのx座標αの値を変えて、接点Aで接する楕円2の寸法のパラメータ r が1になる場合をエクセル表計算ソフトを使って計算した結果、以下の値を得た。
以上の計算の結果、
式1であらわされる楕円と、式2の楕円でr=1で定められる楕円とが接する場合のβの値は、約3.36である。
(解答おわり)

リンク: 
高校数学の目次



2017年06月28日(Wed)▲ページの先頭へ
楕円に円が接触する問題
数V 「いろいろな曲線」
エクセル表計算ソフトの勧め

楕円の式は数Vで学びます。
回転した楕円の式もあらわせます。

下図は、楕円のグラフと円のグラフをエクセル表計算ソフトを使って、散布図グラフであらわしたグラフです。
 この2つの図形の接触の有無を数式処理で判定するのは難しいですが、エクセル表計算ソフトを使って、散布図グラフであらわし、近似計算でグラフが接触する条件を求めることができます。

 とにかく楽に問題を解く方法を探すのが「数学の心」 なので、
エクセル表計算ソフトを使えば問題を解くのが楽になるなら、
そのソフトを大いに使うべきです。

 上の円の中心のY座標=a を少しづつ変えて、楕円に円が接触する場合の円の中心のY座標=a を求めてみます。
 この様に、エクセル表計算ソフトを使って、
楕円に円が接触する場合が、
a=3
の場合であることを求めることができました。

 この問題は、解のaが簡単な有理数になるように作りました。

円の寸法を定めてから、解のaを計算しようとすると:
(1)図形が交差する条件を表した4次方程式を書いて、
(2)次に、図形が接する条件を表した3次方程式を書いて、
(3)両方の方程式が共通する解を持つものとして、ユークリッドの互除法で、順次に方程式の次数を下げていき、最後に a のみの式を求める。
 この方法で a の条件をあわらす方程式を計算するのは、(3)の計算をしているうちに、aの式がどんどん複雑になって、とても処理しきれない、大変難しい問題でした。
 それでも、エクセル表計算ツールの助けも借りて無理やり計算した結果、最後に、以下の a のみの式を展開した複雑な式が得られた。
 この式の解は、何と、全てが、円が楕円に接する場合の a の値をあらわしている。

 それに対して、円の寸法を定めずに、
(1)図形の交点Aを定める。
(2)A点での接線の傾きを求める。
(3)そのA点で接する円の寸法と円の中心座標を計算する。
方法ならば、スムーズに計算が進みます。

問題は、易しく解ける方が良いです。

上の円の半径は、そうして定めました。

交点Aの座標も、楕円の式の上の有理数解を見つけて、問題を簡単にしました。
交点Aの座標は
A(1/2,3/2)
です。
このとき、
A点で接する円の中心のY座標
a=3
が求められました。
最後に、
円の半径rの二乗が5/2
と定めることができました。

リンク: 
高校数学の目次



2017年06月18日(Sun)▲ページの先頭へ
楕円同士が接触する条件
数V 「いろいろな曲線」
エクセル表計算ソフトの勧め

楕円の式は数Vで学びます。
回転した楕円の式もあらわせます。

下図は、2つの楕円のグラフをエクセル表計算ソフトを使って、散布図グラフであらわしたグラフです。
 この2つの図形の接触の有無を数式処理で判定するのは難しいですが、エクセル表計算ソフトを使って、散布図グラフであらわし、近似計算でグラフが接触する条件を求めることができます。

 とにかく楽に問題を解く方法を探すのが「数学の心」 なので、
エクセル表計算ソフトを使えば問題を解くのが楽になるなら、
そのソフトを大いに使うべきです。

 上の楕円の中心のY座標=a を少しづつ変えて、楕円同士が接触する場合の楕円の中心のY座標=a を求めてみます。


 この様に、エクセル表計算ソフトを使って、
2つの楕円が接触する場合が、近似的に、
a=3.35
の場合であることを求めることができました。

リンク: 
高校数学の目次



2017年06月17日(Sat)▲ページの先頭へ
方程式の有理数解の有無の判定
 最高次の係数が1である整数係数方程式が有理数の解を持つ場合、その解は整数解になる。
これを利用して、整数係数の方程式が有理数解を持つか否かを素早く見極めることができる。

以下の例題で、方程式の有理数解の有無の素早い判定方法を示す。

【例題1】
 以下の方程式1は有理数解を持たないことを確認せよ。

【解答】
 式1を、以下のようにして最高次の係数が1である整数係数方程式に変換する。
とする変数wを用いて、式1を以下の式3に書き変える。
 この式3は、最高次の係数が1の整数係数方程式であるので、式3が有理数解wを持つ場合、その解wは整数解になる。
ここで、式3を変形すると、以下の式4が得られるので、式3が整数解wを持つ場合、その解wは2の倍数になることがわかる。
 この結果、式1が有理数解xを持てば、その有理数解は、式2により、以下の様に整数解になる。
ここで、式1を変形すると、以下の式6が得られるので、式1が整数解xを持つ場合、その解xは1の約数で、1か−1になることがわかる。
この、x の解の候補1と−1のどちらも式1の解にならない。

よって、方程式1は有理数解を持たない。
(確認おわり)

リンク:
高校数学一覧



2017年06月16日(Fri)▲ページの先頭へ
球の表面積を積分で求める
「微分・積分」の勉強

(1)積分:
 以下の問題を考えます。
【問題】 
 なぜ、半径 r の球の表面積Sは、
表面積S=4π r
なのか。

 この問題は、以下の様に解くことができます。

先ず、問題をやさしくするために、半径 r が1の場合を考えます。

 次に、以下の図のように、球の表面を輪切りにして多数のリングに分割し、
その1つのリングの面積を計算します。 
リングの幅をΔwとします。
球を輪切りにする間隔のΔxあたりのリングの面積が求められました。
このリングの面積の総和が球の表面積です。
球の表面積が4πになりました。
これから、半径 r の球の表面積Sは、
表面積S=4π r
になることがわかりました。 

 この様に、要素に分割して総和を計算することが「積分」をするということです。

リンク: 
高校数学の目次



2017年06月14日(Wed)▲ページの先頭へ
「微分・積分」はどうすれば勉強できるか
「微分・積分」の勉強

 高校の数Uで、微分・積分を学ぶようになり、その勉強がつまらなくなり数学を学ぶのをあきらめて文系に進むことにする学生が多いらしい。そうなる以前に早めに数学がつまらなくなることを見切って早々と文系に進むことに決める学生も多いらしい。

 そのため、このページでは、「微分・積分」をどうすればおもしろく勉強できるかというコツを考えます。

先ず、勉強の順番が、
(1)極限
(2)微分
(3)積分
になっている事が、
「微分・積分」の勉強をつまらなくしていると考えます。

 数学が好きでいつも数学を勉強している学生は、「微分・積分」の授業の順番には「微分・積分」を学んでいないと考えます。

 数学の問題を多く解いていて、数学の問題を解く技術を磨いてきた学生は、「微分・積分」の基礎的な概念は既に考えたことがあり、その概念も利用して問題を解いている。
 そして、「微分・積分」の授業に出会ったら、既に知っている自分の知識を整理するために役立てようとして授業を聞くから、「微分・積分」の勉強ができるのだと考えます。

 その、既に知っている「微分・積分」の知識とは、どのようなものかを以下で考えます。

 数学が好きでいつも数学を勉強している学生は、好奇心を満足させる面白いテーマの順に数学を学んで行くと思います。
 面白い数学の課題を見つける都度、その課題を自分で研究するという道草を食います。その道草の1つに、基礎的な「微分・積分」の概念の修得があると思います。


 そのため、以下では、その、面白い順に、「微分・積分」を学んでいこうと思います。
(1)積分
(2)微分
(3)極限
の概念の順に学ぶのが面白く、
それを学んだら、
(4)極限の概念の精密化
(5)微分の知識の整理
(6)積分の知識の整理
を勉強するのが、勉強の順番として適切だと考えます。

(1)積分:
 以下の問題を考えます。
【問題1】 
 なぜ、三角錐の体積Vは、
体積V=底面積S×高さh×(1/3)
なのか。
 この公式は、何とか覚えられたと思いますが、
もっと、すっきり覚える方法が無いか?
と考えたことがあると思います。
 この問題は、以下の様に分析することができます。
この解に法則性があるように思われますが、
この問題は難しいので、これを解くための準備として、
この問題をもっとやさしくした以下の問題を先に解くことにします。

 【問題2】
 なぜ、三角形の面積Sは、S=底辺L×高さh×(1/2)
なのか。
 
この問題ならば、上のような場合を考えて、解くためのヒントを見つけることができます。

この問題2で得られたヒントを拡張して、 
以下の様に問題1を解析します。

 【問題1(再)】
これは、以下のグラフの面積を分割して計算することに対応すると考えることができます。
(この計算で用いた2乗の数列の和の式はここをクリックした先のページにあります)

 このように問題を解析することで、後は、この2次関数のグラフの面積を与える法則性を把握すれば、この種の問題が自由に解けるようになることが理解できます。

 この様に、分割した要素の総計を求めてグラフの面積を計算する手法が「積分」です。
 また、その計算のための法則性を整理して覚えることが「積分」を勉強するということです。

(微分積分学の歴史) 

 ライプニッツが、1684年に「極大と極小にかんする新しい方法」を出版して、その中で微分法を発表し、
ついで1686年に「深遠な幾何学」を出版して積分法を発表しました。

 その後に、ニュートンが微分積分学を発表しました。

   それに対して、旧い数学者のバークレー司教(Bishop George Berkeley)が微分積分学を攻撃した論争が微分積分学を正しく育てました。
 バークレー司教は、ダブリンのトリニティ・カレッジで神学を学び、後に講義をする。アイルランド、クロインの(英国国教会の)監督Bishopとなる(1734)。

 バークレー司教は、数学から唯物論を追放する目的で、『解析者―不誠実な数学者へ向けての論説』(The Analyst: or a Discourse Addressed to an Infidel Mathematician, 1734)で、ニュートン・ライプニッツ理論(微分積分学)を攻撃し、大論争を引き起こす(『解析教程』第II章第1節参照)。
ド・モアブル、テイラー、マクローリン、ラグランジュ、ヤコブ・ベルヌーイ、ヨハン・ベルヌーイなどが論争に加わり、微積分学の論理的基礎づけに対する関心を高めた功績は大きい。
とくに、マクローリンは反論のためにニュートンの方法の厳密な構成を行った。


以下で、バークレー司教の微分積分学に対する感想を見てみます

『バークレー司教:解析者より』
  「しかし、速度の速度、その速度、そのまた速度、またその速度、またまたその速度などなどというのは、私が間違っているのでなければ、すべての人間の理解を越えてしまっています。

精神がこの捉え難いアイデア(微分積分学)を解析し追及すればするほど、それはまごつき狼狽えることになり.....」

『バークレー司教:解析者より』
  「......我が時代の解析者
(微分積分学)は有限の量の差を考えるだけでは満足しません。
彼ら(微分積分学)はさらにその差の差を考え、最初の差の差の差を考えます。 そしてさらに無限にまで。
 つまり彼ら
(微分積分学)は認識できる最小の量よりさらに無限に小さい量を考えます。
その無限に小さい量よりもさらに無限に小さな量を、そしてその上これまでの無限小量よりもさらに無限に小さい量を考え、終わりも限界もないのです。
......もう告白するしかありませんが、無限に小さい量を心に描くことは ......私の能力を超えています。
しかし、そのような無限に小さい量の、それよりさらに無限に小さい一部、だから結局それを無限倍したとしても最も微細な有限の量にまでなることもできない、そんなものを想像するということは、どんな人にとってもそれこそ無限に困難なことだろうと、私は思うのです。.....」

『バークレー司教:解析者より』
  「そして、この流率(微分)とは何だろうか?

  無限小の増分の速度。 そして、これら同じ無限小の増分の速度とは何なんだろうか?
  これらは有限の量でもなく、無限に小さい量でもなく、無でもない。 こんなものなら、過ぎ去った量の幽霊と呼んではいけないというのだろうか? 」

 ニュートンとライプニッツの微分は、「無限小」の概念が十分に論理付けされていなかったため、今日のような厳密さが欠けていただが、微分は、力学や天文学などで応用可能、しかも実用的であったため、ベルヌーイやロピタル、オイラー、ラグランジュ、ラプラスなどの研究によって普及していった。

 微分学が厳密性を伴うようになったのは、19世紀に入ってからである。仏の数学者コーシーは、1821年に発表した「解析教程」で「極限」や「無限小」、「連続関数」の概念を定義し、解析学の基礎を刷新し、その後デデキントやカントールによる実数論などを経て、今日の微分の基礎が完成した。


(補足1)
 微分と積分は,歴史的にも,数学的にも,別々に定義される. 独立して定義されたものが,結びついている。 (日本の高校の微分積分の教科書ではいちばん大切な数学の発見が,次代に伝わらない。) 

(補足2)
(「リーマン積分可能」の定義)
「微分積分学入門」(横田 壽)の124ページから125ページに「リーマン積分可能」の定義が書いてあります:

 ここではドイツの数学者G.F.B. Riemann (1826-1917) によって示されたRiemann 積分につ いて学んでいきます.リーマン積分による「積分可能」の定義は、全ての種類の「積分可能」の定義の基礎になっています。
f(x) は閉区間[a, b] で定義されているとします.この閉区間[a, b] を次のような点xi(i = 1, 2, . . . , n) でn 個の小区間に分割します.

(a = x0 < x1 < x2 < · · · < xi < · · · < xn = b)

 この分割をΔ で表わし, Δxi = xi − xi−1 (i = 1, 2, . . . , n) のうちで最も大きい値を|Δ| で 表わします.
いま,それぞれの小区間[xi−1, xi] のなかに任意の点ξi をとり,Riemann 和 (Riemann sum) とよばれる次の和を考えます.

このとき、
となる実数S が存在するならば,このS をf(x) の定積分(definite integral) といい, f(x) は閉区間[a, b] で積分可能(integrable) であるといいます.また,このS を次のように表わします.
つまり関数f(x) が閉区間[a, b] で積分可能であるということは,分割の仕方および点ξi(i = 1, 2, . . . , n) のとり方に関係なく、各点の関数値の和が一通りに定まるということです.

 この定義に従い、関数の積分可能性を以下の様にして調べることができます。
先ず小さな閉区間[a, b] を定めて、
その区間の小区間への分割の仕方および点ξi(i = 1, 2, . . . , n) のとり方に関係なく、各点の関数値の和が一通りに定まる(積分可能)か否かを調べることができます。 

(積分が不可能な関数)
 下のグラフの関数f(x)のように、どの位置においても関数の極限が存在しない関数があり得ます。
 例えば、 
xが有理数の場合にf(x)=0であって、
xが無理数の場合のf(x)=1
という、極限が存在しない関数f(x)などです。
 そういう、極限が存在しない関数f(x)を積分して関数F(x)を得た場合(もし積分できた場合)、その積分により得られた関数F(x)は微分可能だろうか。
 そもそも、微分の計算は極限を求める計算なので、その関数f(x)が積分できても、その積分した関数F(x)を微分した場合に、元の関数f(x)は(極限値が存在しないので)、微分によっては得られないと考えます。  

 上図の関数f(x)の変数x=x1からx=x2までの変数xの閉区間をn等分して、その区分した部分毎にf(x)の値f(ξ)を求めて、その値の和で積分します。
(1)その際に、 変数x=ξが全て有理数なら、f(ξ)=0になり、積分結果は0になります。
(2)一方、変数x=ξが全て無理数√2の有理数倍なら、f(ξ)=1になり、積分結果は(x2−x1)になります。
(3)f(x)の値f(ξ)の選び方によって結果が変わるような計算の値は定かでは無いので、その様な関数f(x)は積分することができません。 

 このように、微分積分学では、あらゆる関数に微分積分を行う理論を作ろうとすると、いろいろな難しい問題があることがわかりました。
 微分積分学で、難しい問題が生じない関数の範囲を把握して、その範囲内で微分積分の計算をすることで、応用上で微分積分を使い易くできます。
 そのため、使い易い関数として、極限が存在し、かつ、連続な「連続関数」 を主に扱う対象にし、また、「微分可能性」で関数の変数の定義域を制限して、微分積分を行う範囲を制限します。その範囲内で成り立つ法則を把握して、種々の公式を導き出して使うことで微分積分学を最大限に応用できるようになります。

 微分積分学は、微分可能な関数と積分可能な関数を定義して、その種の関数の間で微分したり積分をします。

「関数を積分して、それを微分したら元の関数に戻る」 
という、微分積分学の基本定理がありますが、
その定理は、その関数f(x)の積分可能な部分に限り、かつ積分後の関数F(x)の微分可能な部分に限って成り立つ定理です。
 その定理の大前提に、何が微分可能で何が積分可能であるかの定義があります。

 微分積分を学ぶ者は、「微分可能」と「積分可能」という制限条件を定め、その制限条件を満足する関数を扱うのが微分積分学だと認識することがとても大切です。 
 しかし、この一番大切な概念を高校2年には教えない。高校3年に至っても「積分可能」の概念を教えていないようです。
 しかも、1997年からは、日本の高校の数学IIで面積が無定義に用いられという、数学センスを否定する蛮行が行なわれた。そして、関数f(x)のグラフとx軸で囲まれる領域の面積を,x方向で微分するともとの関数f(x)になり、面積の微分がf(x)となるという本末転倒なことを教えるようになった。

  現在の高等学校の教科書は,積分の概念の説明を回避している。

 “論証"・論証"とやかましくいっておきながら,微積のところへ来ると,とたんにいいかげんな議論でごまかしている。一ーまた高校ではごまかさざるを得ないだろう。高校数学の目的は生徒のあたまを混乱させることにあるのだろうか。

 このようなデタラメな教育では、高校生に微分積分が分からないのも無理無いと考えます。
 バークレー司教が、これを知ったら、「論外の教育だ」 と酷評すると思います。 

 (補足3:日本の微分積分の教育)
 ヨーロッパやアメリカでは、「高校で微分積分を教えるのは、直観にうったえる内容に限られ、正確な微分積分を教えられない」という理由で、微分積分は大学生に教える科目になっています。
 日本の大学でも、その欧米の教育に合わせて、初めて学ぶ者に分かるように微分積分を改めて教育しているようです。
 大学で使う微分積分の参考書は、高校で教える微分積分の知識を全く知らない学生に理解できるように書かれています。
 しかも、大学生向けの微分積分の参考書の方が、日本の高校生向けの微分積分の参考書よりやさしく分かり易い。

 高校の微分積分を勉強するなら、先ず、大学生向けの微分積分の参考書を読むことを推薦します。高校の微分・積分の教科書は分かりにくいだけで無く、間違いも含まれています。読まない方が良いのではないかと考えます。
 とりあえず、大学生向けの参考書で無料でダウンロードできる、
「微分積分学入門」(横田 壽)
を読んでみることをお勧めします。 
(しかし、同じ著者の書いた高校生向けの参考書「確実に身につく微分積分(2012年)」の1版は、内容が劣化しているのでお勧めできません。大学生向けの本物の知識の参考書「微分積分学入門(2004年)」を読んでください。)

「微分積分学入門」(横田 壽)の読み方は、 66ページから始まる2章「微分法」の以前のページは斜め読みして、何が書いてあるらしいかを漠然と把握しておいて、2章「微分法」以降を精読することをお勧めします。読んでいるうちに知らない関数や概念が出てきたら、66ページ以前に書いてありますので、探して、その部分を読んで理解するように勉強してください。

「微分積分学入門」(横田 壽)は、積分の説明もわかり易いのでお勧めですが、先ずは124ページのリーマン積分を読んでから、次に、その前のページに書かれている積分の説明を読んで欲しい。

リンク: 
高校数学の目次



曲線同士が接する条件は点の座標の解の重なり
「微分・積分」の勉強

(1)なめらかな曲線の接線は、微分を使って見通し良く正しく定義できる。
(2)接点の座標の計算だけで2曲線の接触を判定する場合は、接点(x,y)が重解を持つか否かで判定する。接点(x,y)のx座標かy座標の一方の座標だけでの重解の有無で判定してはいけない。

【問1】放物線y=x/4と円x+(y−1)=1は接するか?

(方程式が重根を持つかで解析する方法) 
放物線 y=x/4  (式1)
円 x+(y−1)=1 (式2)
この2つの図形は、(0,0)で接することが図から明らかである。
そして、接線は、
接線 y=0 (式3)
であることが明らかである。
 

実際に、式1の放物線と式3の直線を連立させて、方程式からyを消去すると、
0=x/4
xは0となる重根を持ち、式1の放物線は式3の接線と(0,0)で接する。
 

次に、式2の円と式3の直線を連立させて、方程式からyを消去すると、
+(0−1)=1
=0
xは0となる重根を持ち、式2の円は式3の接線と(0,0)で接する。
 

【この問題で注意する点】
 曲線同士が接する条件は、
接点(x,y)が重解を持つか否かで判定するべきであり、接点(x,y)のx座標かy座標の一方の座標だけで重解の有無を判定してはいけない。
 

【解答】
式1の放物線と式2の円の方程式を連立させる。
放物線 y=x/4  (式1)
円 x+(y−1)=1 (式2)
式1から、
=4y (式4)
式4を式2に代入してxを消去する。
4y+(y−1)=1
+2y=0
y(y+2)=0 (式5)


 接点(x,y)が多重の解を持つかどうかはx座標も確認しないといけない。
 上の計算で得た式5に式4を代入して、x座標であらわした以下の式6に書き直す。
(x/4)/4+2)=0 (式6)
(x)(x+8)=0 (式7)
(x+8)≠0 なので、
=0 (式8)
が得られる。
式8から、xの値が重根の値0を持つことがわかり、
「多重根ができるから接する」。
(解答おわり)

(補足)
 この例題のように、曲線の接触の確認には、接点(0,0) の x 座標が重根になるのであって、重解の2点のy座標は同じになるため、 x 座標が重根になる事を確認しなければならない。

(注意)
 ここで、この問題のグラフの x 座標を、
t ≡ x
で定義されるt座標を使い、 t,y 座標系での曲線の接点を求める問題と考えたらどうなるか。
t ≧ 0,
(式1)→ y=t/4  (式1b)
(式2)→ t+(y−1)=1 (式2b)
 この場合は、式2bに式1bを代入すると、
t+((t/4)−1)=1,
16t+((t−4)=16,
+8=0,
t(t+8)=0,
t=0
このように、t座標の解も重根を持たない。
 それでは、2つのグラフが接しないという解になってしまう。
 一方、与えられた2つのグラフの t,y 座標系に写像した2つのグラフは、下図のようになり、この2つのグラフは接しない。
よって、 t,y 座標系では、この2つの曲線は接しないという結論は正しい。

 2つのグラフが接するという事は、 x,y 座標系でのみ成り立つ現象である。変数変換をしたら、グラフが接するかどうかは不明になる。

(結論)
 曲線の式と曲線の式を連立させて方程式を解く場合には、
曲線が接する判定条件は、(x,y)の座標点が重解になるかどうかで判定するべきである。


(補足)
 以上の計算における曲線の接触の判定の計算は、「この式8が得られることで正しく重解の存在を判定できるのか?」 という疑問が湧くという、接点の判定条件が怪しげで不明瞭であるという問題がある。
 この不明瞭さを解消するには、式の微分を用いることで明瞭な判定ができる。その判定方法は、後のページの例題で例示する。

リンク: 
高校数学の目次



2017年06月10日(Sat)▲ページの先頭へ
対数関数の微分
 高校2年の微分の授業で、対数関数の微分を教えていない。
 対数関数の微分は、高校3年の理系学生に、数Vの「微分法」でようやく教えているようです。
 しかし、ある関数の微分を教えない微分の授業というのは、微分の本質を教えていない。数学教育の崩壊に近いのではないかと考えます。

【対数関数の微分の公式】
 以下で、対数関数の微分の公式を証明します。
ここで e はネイピア数と呼ばれる重要な数です。

【証明開始】
 以下で、対数関数の微分を計算する。
(証明おわり)
 こうして、対数関数の微分の公式が導き出せ、
また、ネイピア数 e が無理無く導入できた。

リンク:
高校数学の目次



2017年06月05日(Mon)▲ページの先頭へ
指数関数の微分
 高校2年の微分の授業で、指数関数の微分を教えていない。
 指数関数の微分は、高校3年の理系学生に、数Vの「微分法」でようやく教えているようです。
 しかし、ある関数の微分を教えない微分の授業というのは、微分の本質を教えていない。数学教育の崩壊に近いのではないかと考えます。

 以下で、指数関数の微分を簡単に説明します。
指数関数のうち一番重要なネイピア数 e の指数関数の微分の式1を説明します。

【式1の証明の試み1】
ネイピア数 e は以下の式2で定義されます。
この式2を使って、ネイピア数 e の指数関数が以下の式3で定義できます。
この式3を微分して以下の式が得られます。
(証明おわり?)

【上の証明の数学的批判】
 上の証明では、ネイピア数 e のx乗を、大きな数mを使った極限であらわした式に対して微分の公式を適用して答えを計算しています。
 しかし、そもそも「微分」とは、無限に小さい微小量に関して、関数の変化率を求める計算のことです。無限に小さい微小量を使う以前にネイピア数 e の値が確定している必要があります。そのため、微分で使う無限に小さい微小量よりも、ネイピア数 e の値を定義する微小量=(1/m)の方がもっと小さい微小量でなければなりません。
 (1/m)にくらべれば、微分に使う微小量の方がきめが粗いのです。そのため、(1/m)における極限を求めるよりも先に微分の公式を使うのは、数学的におかしい計算です。

【式1の証明】
  (1/m)にくらべれば、微分に使う微小量Δxの方がきめが粗いということが分かったので、その、きめが粗い微小量Δxを使った微分の定義の式を使って、m乗の式を展開した以下の式を計算する。
この式は、mが十分大きいと以下の式に変形できる。
 このように、先にmの極限の計算をしてから、次にΔxの極限の計算をした。
すなわち、きめの細かい(1/m)の極限を先に計算して、次に、Δxの極限の計算をしたので、この計算ならば問題ない。
(証明おわり)

(補足1)
 上の計算のように、 きめの細かい(1/m)と、きめの粗いΔxを混在させた式を書くと、Δxの値が十分小さければ、それが(1/m)よりも大きくても、Δxの二乗以上の項を省略することができることが顕わにわかる。
 その計算は、結果的に、mの極限を計算する前に微分の公式を適用したのと同じになりますが、その計算をしても良いことを顕わにして計算するので、その順に計算しても正しく論理性が保たれた証明ができます。

(補足2)
 この様に、ネイピア数 e の指数関数が、m乗の式3で定義されているので、そのm乗の式をΔxのk乗(k=0〜m)の項の和から成る多項式に展開することができ、それにより、微分の値を計算することができた。
 ネイピア数 e 以外の数を底にした指数関数も、式3と同様のm乗の式であらわすことで、その指数関数の微分を計算することができる。
 全ての指数関数のうち、ネイピア数 e の指数関数が、最も単純な形の式3であらわすことができる。そのため、ネイピア数 e の指数関数が最も基本的な指数関数である。

(補足3)
 ネイピア数eは、以下の様にして指数関数を微分する公式を求めようと努力する中で、以下の様に定義することができる。
この式4の指数関数を微分しようとしても、直ぐには微分の計算方法がわからない。
であることを考慮して、
この式4を以下の多項式5に展開する。そうすると微分の計算ができるようになる。
先ず、以下の式6で定義する簡単な形の指数関数を考える。

この式6を、以下の様に展開する。
こうして、式5の形に展開した式8が得られた。
この式を各項毎に微分して式9を得る。
この式9により、式6で定義したネイピア数の指数関数は、微分しても同じ指数関数に戻ることがわかった。

(補足4)
 ネイピア数は、指数関数の微分よりも先に対数関数の微分を考えることで、以下のように無理無く導入できる。
こうして、対数関数の微分の公式が無理なく導き出せた。

リンク:
高校数学の目次



2017年06月02日(Fri)▲ページの先頭へ
指数関数で一番大切なネイピア数e
 高校2年で、指数関数において最も大切なネイピア数 e を教えていない。
 ネイピア数 e は、高校3年の理系学生に、数Vの「微分法」でようやく教えているようです。
 しかし、指数関数を教える時に一番大切なことを教えないということは、数学教育の崩壊に近いのではないかと考えます。

 以下で、ネイピア数を簡単に紹介します。
ネイピア数 e は、以下の式1のnを無限に大きくした極限で得られる数です。
e=「船人、ヤツは一発梯子(ふなびと、やつはいっぱつはしご)」

 このネイピア数 e を底にした式2であらわす指数関数は、最も大切な指数関数です。
 この指数関数には、以下の微分の関係が成り立ちます。
そして、この指数関数は、以下の式3であらわすマクローリン展開という無限級数であらわすことができます。

リンク:
高校数学の目次



2017年06月01日(Thu)▲ページの先頭へ
マクローリン展開とオイラーの公式
以下でオイラーの公式を導きます。
先ず、ネイピア数eを底にした指数関数 e マクローリン展開します。

ここで、指数関数の虚数乗を以下の式2で定義します。
cos(x)をマクローリン展開します。
sin(x)をマクローリン展開します。
式3と式4を使って以下の式を作ります。
この式5は、オイラーの公式と呼ばれています。

(関連する話題)
 オイラーの公式によって、以下の問題が解決されました。
対数関数 log(x)を、xが負の場合にも対数関数を定義したい希望がありました。
log(−1)=a
とすると、
2a=2log(−1)=log((−1))= log(1)=0
∴ a=0 ?
という矛盾を生じました。
この矛盾は、以下のように解決できます。
log(−1)=(2n+1)πi
a=(2n+1)πi
であって、
2a=2(2n+1)πi=2mπi
なので、
2log(−1)=2(2n+1)πi
になったのです。
この
2(2n+1)πi 
は2分の1にしても、
(2n+1)πi 
になるだけで、0や2mπi にはならないです。
また、 log(1)についても、
log(1)=0+2mπi
となり、その答えは0だけでは無い、
ということがわかります。

リンク:
高校数学の目次



微分とマクローリン展開
以下の微分の式が成り立ちます。
(1次式)
(2次式)
(3次式)
(4次式)
(5次式)
そのため、以下の式1が成り立つ。
この式1をマクローリン展開と呼ぶ。

リンク:
高校数学の目次



3倍角の公式
3倍角の公式はおぼえにくい。
そのため、以下の式1のオイラーの公式を覚えて使って3倍角の公式(式3と式4)をすぐ導き出せるようになって、
3倍角の公式を覚えないで良くなってください。
 上の式3と式4が3倍角の公式です。

リンク:
高校数学の目次



   




新着トラックバック/コメント


カレンダ
2017年6月
       
 

アーカイブ
2009年 (56)
2月 (1)
3月 (14)
4月 (30)
5月 (11)
2010年 (31)
7月 (1)
8月 (17)
9月 (4)
10月 (7)
11月 (1)
12月 (1)
2011年 (105)
1月 (10)
2月 (11)
3月 (16)
4月 (31)
5月 (4)
7月 (12)
8月 (12)
9月 (5)
11月 (3)
12月 (1)
2012年 (28)
1月 (3)
2月 (8)
3月 (6)
4月 (8)
5月 (1)
7月 (2)
2013年 (149)
1月 (12)
2月 (36)
7月 (5)
8月 (7)
9月 (22)
10月 (26)
11月 (25)
12月 (16)
2014年 (27)
1月 (13)
2月 (12)
3月 (2)
2015年 (47)
1月 (1)
2月 (6)
3月 (8)
4月 (16)
5月 (11)
6月 (4)
12月 (1)
2016年 (55)
4月 (4)
8月 (4)
9月 (6)
10月 (6)
11月 (22)
12月 (13)
2017年 (124)
1月 (10)
2月 (2)
3月 (5)
4月 (5)
5月 (10)
6月 (13)
7月 (15)
8月 (12)
9月 (17)
10月 (23)
11月 (6)
12月 (6)

アクセスカウンタ
今日:351
昨日:3,015
累計:2,056,735