勉強しようNTTのBlog - 2017/07

算数の問題と解答とを考えていきます。




2017年07月31日(Mon)▲ページの先頭へ
微分可能の定義
「微分・積分」の勉強
 高校2年生から、極限・微分・積分の「意味がわからない」「つまらない」「教わる計算方法が正しいと言える理由(証明)がわからない」で数学の学習から脱落する高校2年生が多いらしい。
 その脱落の原因は、高校2年の極限・微分・積分の授業では、数学のうたい文句から外れた教育がされるからではないかと考えます。
すなわち、今までは、
「数学は、公式を正しく証明した後にその公式を使う」
と言って来たが、
高校2年生の、極限・微分・積分の授業からは、
「数学は、計算結果さえ合えば良い、途中の経緯は問わない、公式の証明は間違っていても問題視しない」
という教育思想が入り込み、
その思想の行き過ぎを避けるため、
「便利すぎる公式は、それをつかって直ぐ答えが得られてしまうから教えない」
という思想が混ざり、
数学教育に大きな濁りが入り込むので「微分積分がつまらない」となる原因があるのではないかと考えます。

 その濁りに押し流され無いため、高校2年生も 公式を厳密に証明して納得してから使う、数学の心に従って極限・微分・積分の学習をして欲しいと考えます。

 先ず、微分とは何かを、微分可能のハッキリした定義を知ることで頭を整理しましょう。

関数f(x)であらわされるグラフの傾きは、以下のようにあらわされます。
この傾きは以下に説明する微分によって求めます。

---(定義2.1 「微分積分学入門」(横田 壽)67ページ---
関数f(x) がx0 を含むある区間で定義されているとき,極限値
(有限の傾きA)
が存在するならば,
関数f(x) は, x = x0 微分可能(differentiable) であるといいます.
また,この極限値A を点x0 における微分係数といい,

で表わします.
-----(定義おわり)--------------------------- 

f(x) がx0 で微分可能でなくても、
h<0について、
 
または、
h>0について、
 
が存在することがあります.
下の図のような場合です。
その場合,
最初の値を左側微分係数(left-hand derivative ) と いい,
で表わし,
後の値を右側微分係数(right-hand derivative) といい,

で表わします.
微分可能の定義より,

 が共に存在し,かつ両者が等しいとき に限りf(x) はx = x0 で微分可能となります

関数f(x)が微分可能の場合に、
関数f(x)が初等関数などの通常の関数の場合は、
Δyの誤差が以下の式であらわせます。
----ビッグオー O(Δx)の 定義--------
ここで、O(Δx)は、以下のように定義されます。

x=x0+Δxとする絶対値が十分小さいΔxに対して、
ある定数Mがあって、
|Δy−(df/dx)Δx| ≦ MΔxμ
が成り立つとき、 
|Δy−(df/dx)Δx|はオーダーμの無限小であると言い、
 Δy−(df/dx)Δx=OΔxμ)とあらわす。

つまり、OΔxは、MのΔx倍程度の誤差をあらわす誤差関数です。
Δxが0に近づくと、誤差O(Δx)は、Δxよりも更に急速にMのΔx倍のオーダー(概算値)で0に近づくということをあらわしています。
----(定義おわり)---------------

 全ての関数について厳密に成り立つ関係としては:
関数f(x)が微分可能であれば、Δxが小さくなればなる程、Δyの誤差が、MのΔx倍よりも急速に小さくなる誤差関数(スモールオー)で表した以下の式が成り立っています。
 スモールオー o(Δx)の定義は、上の極限の式であらわされ、Δxよりも急速に小さくなる誤差関数です。

 Δxが小さくなればなる程、Δyの誤差o(Δx)が、MのΔx倍よりも急速に小さくなるので、Δxが十分小さいと考えれば、誤差が十分小さくなり、以下の近似式がいっそう正確に成り立つようになります。
 そのため、Δyを上の式であらわして微分を計算して良いです。

(注意1)関数の変数を変換すると微分不可能な点が微分可能な点に変わることがある。
 下図のグラフの関数は、O点では傾きが無限大なのでxで微分不可能です。
しかし、変数xを以下のグラフの関係を持つ変数tに変換してみます。
 この変数tで元の関数をあらわすと以下のグラフになります。
このグラフはO点で、tで微分可能です。
このように関数の変数を変換する、変数xでは微分不可能だった関数の点が、変数tでは微分可能になる、ということが起こり得ます。 
という関係があります。
 有限の微分係数が存在する(微分可能)という状態は、変数を変換すると変わることがあります。
 それは、微分する変数に応じる「微分可能」という条件が、
いわば、
「式を0で割り算する計算をしてはいけない」
という計算の縛りと似た意味を持つことを意味しています。

(注意2)関数の変数を変換すると微分不可能な点が微分可能な点に変わることがあるもう1つの例を考える。
 下図のグラフの関数は、O点では、左側微分係数と右側微分係数が異なるのでxで微分不可能です。
しかし、変数xを以下のグラフの関係を持つ変数tに変換してみます。
この変数tで元の関数をあらわすと以下のグラフになります。
このグラフはO点で、tで微分可能です。
このように関数の変数を変換する、変数xでは微分不可能だった関数の点が、変数tでは微分可能になる、ということが起こり得ます。

(注意3)関数の変数を変換すると、接する2つグラフが接さない2つのグラフに変換される例を考える。
 下の2つの関数のグラフは、O点で同じ微分係数=0を持ち、O点で接しています。
しかし、変数xを以下のグラフの関係を持つ変数tに変換してみます。
この変数tで元の2つの関数をあらわすと以下の2つのグラフになります。
元の2つのグラフの変数xを変数tに変換した2つのグラフは、O点で変数tで微分すると異なる微分係数を持ち、O点で接さず交差しています。
(変数を変換すると、このように、互いに接する2つのグラフが、接さない2つのグラフに変わってしまうことがあることに気をつけましょう)

【導関数】
 関数f(x) が,ある区間 I の各点で微分可能(有限の傾きを持つ)のとき
f(x) は区間 I で微分可能(differentiable on I) であるといいます.
この場合,区間 I の各点にそこでの微分係数を対応させることにより定まる関数を
f(x) の導関数(derivative) といい,

であらわします。

また,関数f(x) の導関数を求めることを微分する(differentiate) といいます.

また、xの関数f(x)=yの微分(導関数)を、y’とも書きます。


例題2.4 f(x) = xn (n 整数) を微分してみましょう.
となります。
(解答おわり)
が得られました。

次に、以下の微分も計算してみます。
この図形を直線y=xに関して折り返して考えます。
こうして、
が得られました。

(微分の式の前提条件:関数が存在すること)
微分をあらわす式: 
(dy/dx)は関数f(x)の導関数をあらわす式です。
そのため、
(dy/dx)=(df(x)/dx)
であり、変数yを微分で使う場合には、
y=f(x)とあらわす関数f(x)が必ず存在することが、変数yを使う前提条件にあります。
関数f(x)が必ず存在するということは、変数xに対して、必ず1つの値のy=f(x)が定まる関係(規則)が、変わらず、存在するということです。
微分の式は、定まった関数であらわされる関係が必ず存在する変数yとxその他の媒介変数の間の関係をあらわす式です。
微分の計算で使う全ての変数yやxやその他の媒介変数同士は、必ず、その変数を他の変数であらわす不変な関数で結ばれていることが前提にあります。
その関数はどの式であっても良いですが、計算の途中で変化することが無い、いつも変わらない関係式であることが微分の計算の前提になっています。

(微分可能な関数を選んで微分すること)
 下図のグラフの関数はでこぼこしていて、でこぼこがあらゆる細部にまで在り、どの有理数のxの位置においても微分不可能な関数の例です。
 この図の関数のように、関数が微分不可能な変数の値を判定して、変数の範囲(定義域)から除外するために、「微分」の定義を使って関数の変数を選別して、その変数の範囲の関数を微分計算の対象にします。
 実際は、微分不可能な関数は、警戒しなければならないほどに多く存在するわけでは無く。数学で学んで来た、ほとんど大部分の初等関数は微分可能な関数です。

 また、上のグラフのよう微分不可能な変数(有理数)が無限にある関数であっても、積分はできます。
元の関数が連続関数等の、関数の極限が存在する関数の場合は、その関数を積分した関数は微分可能な関数になります。こうして、極限が存在する関数を積分して関数群を作れば、その関数群は皆、微分可能な関数であることが保証されます。

(「リーマン積分可能」の定義)
「微分積分学入門」(横田 壽)の124ページから125ページに「リーマン積分可能」の定義が書いてあります:

 ここではドイツの数学者G.F.B. Riemann (1826-1917) によって示されたRiemann 積分につ いて学んでいきます.リーマン積分による「積分可能」の定義は、全ての種類の「積分可能」の定義の基礎になっています。
  f(x) は閉区間[a, b] で定義されているとします.この閉区間[a, b] を次のような点xi(i = 1, 2, . . . , n) でn 個の小区間に分割します.
(a = x0 < x1 < x2 < · · · < xi < · · · < xn = b)

 この分割をΔ で表わし, Δxi = xi − xi−1 (i = 1, 2, . . . , n) のうちで最も大きい値を|Δ| で 表わします.
いま,それぞれの小区間[xi−1, xi] のなかに任意の点ξi をとり,Riemann 和 (Riemann sum) とよばれる次の和を考えます.

このとき、
となる実数S が存在するならば,このS をf(x) の定積分(definite integral) といい, f(x) は閉区間[a, b] で積分可能(integrable) であるといいます.また,このS を次のように表わします.
つまり関数f(x) が閉区間[a, b] で積分可能であるということは,分割の仕方および点ξi(i = 1, 2, . . . , n) のとり方に関係なく、各点の関数値の和が一通りに定まるということです.

 この定義に従い、関数の積分可能性を以下の様にして調べることができます。
先ず小さな閉区間[a, b] を定めて、
その区間の小区間への分割の仕方および点ξi(i = 1, 2, . . . , n) のとり方に関係なく、各点の関数値の和が一通りに定まる(積分可能)か否かを調べることができます。 

【積分が不可能な関数】
下のグラフの関数f(x)のように、どの位置においても関数の極限が存在しない関数もあり得ます。
 例えば、 
xが有理数の場合にf(x)=0であって、
xが無理数の場合のf(x)=1
という、極限が存在しない関数f(x)などです。
 そういう、極限が存在しない関数f(x)を積分して関数F(x)を得た場合(もし積分できた場合)、その積分により得られた関数F(x)は微分可能だろうか。
 そもそも、微分の計算は極限を求める計算なので、その関数f(x)が積分できても、その積分した関数F(x)を微分した場合に、元の関数f(x)は(極限値が存在しないので)、微分によっては得られないと考えます。

 この関数f(x)の変数x=x1からx=x2までの変数xの閉区間をn等分した小区間を作り、その各小区間毎にf(x)の値f(ξ)を求めて、その値の和で積分します。
(1)その際に、 変数x=ξが全て有理数なら、f(ξ)=0になり、積分結果は0になります。
(2)一方、変数x=ξが全て無理数√2の有理数倍なら、f(ξ)=1になり、積分結果は(x2−x1)になります。
(3)小区間内の変数xの点ξの選び方によってf(ξ)の和による積分結果が変わるような計算の値は定かでは無いので、その様な関数f(x)は積分することができません。

 このように、微分積分学では、あらゆる関数に微分積分を行う理論を作ろうとすると、いろいろな難しい問題があることがわかりました。
 微分積分学で、難しい問題が生じない関数の範囲を把握して、その範囲内で微分積分の計算をすることで、応用上で微分積分を使い易くできます。
 そのため、使い易い関数として、極限が存在し、かつ、連続な「連続関数」 を主に扱う対象にし、また、「微分可能性」で関数の変数の定義域を制限して、微分積分を行う範囲を制限します。その範囲内で成り立つ法則を把握して、種々の公式を導き出して使うことで微分積分学を最大限に応用できるようになります。

 このように、微分積分学は、微分可能な関数と積分可能な関数を定義して、その種の関数の間で微分したり積分をします。「微分可能」と「積分可能」という制限条件を定め、その制限条件を満足する関数を扱うのが微分積分学だと認識することがとても大切です。 
 しかし、この一番大切な概念を高校2年には教えない。高校3年に至っても「積分可能」の概念を教えていないようです。 
 しかも、1997年からは、日本の高校の数学IIで面積が無定義に用いられという、数学センスを否定する蛮行が行なわれた。そして、関数f(x)のグラフとx軸で囲まれる領域の面積を,x方向で微分するともとの関数f(x)になり、面積の微分がf(x)となるという本末転倒なことを教えるようになった。
 
  現在の高等学校の教科書は,積分の概念の説明を回避している。

 このようなデタラメな教育では、高校生に微分積分が分からないのも無理無いと考えます。

(微分積分の教育方針)
 ヨーロッパやアメリカでは、「高校で微分積分を教えるのは、直観にうったえる内容に限られ、正確な微分積分を教えられない」という理由で、微分積分は大学生に教える科目になっています。
 日本の大学でも、その欧米の教育に合わせて、初めて学ぶ者に分かるように微分積分を改めて教育しているようです。
 大学で使う微分積分の参考書は、高校で教える微分積分の知識を全く知らない学生に理解できるように書かれています。
 しかも、大学生向けの微分積分の参考書の方が、日本の高校生向けの微分積分の参考書よりやさしく分かり易い。

 高校の微分積分を勉強するなら、先ず、大学生向けの微分積分の参考書を読むことを推薦します。高校の微分・積分の教科書は分かりにくいだけで無く、間違いも含まれています。読まない方が良いのではないかと考えます。
 とりあえず、大学生向けの参考書で無料でダウンロードできる、
「微分積分学入門」(横田 壽)
を読んでみることをお勧めします。 
(しかし、同じ著者の書いた高校生向けの参考書「確実に身につく微分積分(2012年)」の1版は、内容が劣化しているのでお勧めできません。大学生向けの本物の知識の参考書「微分積分学入門(2004年)」を読んでください。)

「微分積分学入門」(横田 壽)の読み方は、 66ページから始まる2章「微分法」の以前のページは斜め読みして、何が書いてあるらしいかを漠然と把握しておいて、2章「微分法」以降を精読することをお勧めします。読んでいるうちに知らない関数や概念が出てきたら、66ページ以前に書いてありますので、探して、その部分を読んで理解するように勉強してください。

リンク: 
高校数学の目次



2017年07月29日(Sat)▲ページの先頭へ
極限の定義
 高校2年になり学ぶ「極限」は、微分の計算をする上で必要になった計算技術です。
 そのため、微分の計算を先にして、計算に困ったときに「極限」を学ぶという勉強スタイルでも良いと考えます。

そういう計算の役に立つように、頭を整理することが、極限を学ぶということです。  

ここをクリックした先のページのpdfの33ページ(「微分積分学入門」著者:横田 壽)に、極限の定義が書いてあります。

【定義1.2 (直感的極限値) 】

 関数f(x) において, x をx0 に限りなく近づけていくとき,
f(x) がある定数l に限りなく近づくならば, l をx がx0 に近づくときのf(x) の極限値
(limit) といい,

で表わします.

  さて,ここで限りなく近づくというのはどういうことでしょうか.
x がx0 に限りなく近づくとは,
絶対値|x−x0| を限りなく小さくできるということと同じだと考えてもよいでしょう.
同様に, f(x) が定数 l に限りなく近づくということも
|f(x) − l | を限りなく小さくできることだと考えてもよいでしょう.

 そこで,限りなく小さくできるということで考えてみると,
どんな小さな正の数を比較の相手と選んでも,それよりも小さくできるならば,
限りなく小さくできるといえるのではないでしょうか.
 この考え方が数学でいうところの限りなく小さいということなのです(納得しましたか?).
 これを用いて関数の極限をもう一度定義します.
この定義はδ − ε 論法と呼ばれる証明法のもとになっていて,
この章の定理の証明に用いますが,
難しく感じる人は,直感的極限値で十分です.

【定義1.3】

任意の正の数ε に対して,
0 < |x − x0| < δ のとき,

|f(x) − l | < ε が成り立つように
正の数δ が選べるならば,
 
である。

この定義のポイントは、例えば、
x→0を、
0 < |x − 0| < δ
(すなわち、x ≠ 0 の場合に)
として、
例えば、
f(x)→0を、
|f(x) − 0 | < ε 
(すなわち、f(x) = 0 の場合を含む)
というふうに極限を定義していることです。
x→0でx ≠ 0の場合に、
f(x)→0 (f = 0も含む)となる場合を
f(x)の極限が存在する」
という極限の意味を明確にしていることです。
すなわち、
x→0 (x ≠ 0)と、
f→0 (f = 0も含む)は、
異なっていることを明確にしています。

(極限値が存在しない点が有限個ある関数)
 以下の図の関数f(x)のグラフを考えます。
この関数は、x=0の点での極限とx=2の点での極限が存在しません。
x<0で、x→0とすると、f(x)→0になり(左側極限値)、
x>0で、x→0とすると、f(x)→1になります(右側極限値)
左側極限値と右側極限値が一致しない場合は、極限値が存在しません。

(極限値が存在しない点が無限にあり積分できない関数の例) 
 例えば、xが有理数の場合のf(x)の値とxが無理数の場合のf(x)の値が1以上異なるような関数には極限が存在しません。
どの位置においても関数の極限値が存在しない関数は、例えば下のグラフの関数のようになります。

(極限値が存在しない点が無限にあるが積分可能な関数)
上図のノコギリ関数g(x)を使って以下の関数を作ります。
この関数は、以下のx座標で極限が存在しない。
その他、
x=奇数/(整数×2)
の点では極限値が存在しない。

リンク:
高校数学の目次



2017年07月27日(Thu)▲ページの先頭へ
合成関数の微分の公式の信頼性
「微分・積分」の勉強

(5)微分の知識:
 以下の合成関数の微分の公式があります。
この合成関数の微分の公式は、関数f(t)とg(x)があり、
その関数の合成関数の、
y=f(g(x))=h(x)
という関数を作った場合に、
f’(t)=(dy/dt)と、
g’(x)=(dt/dx)との積が、
h’(x)=(dy/ dx)になる、
という公式です。

どの関数f(t)とg(x)についても、公式の成立条件が満足されれば、公式が成り立つ、という公式です。

この公式には一定の縛り(成立条件)があります。それは、「(dy/dt)=f’(t)の有限の微分係数が存在し、(dt/dx)=g’(x)の有限の値の微分係数が存在する(微分可能)」という前提条件です。

「関数が微分可能(有限の値の微分係数が存在する)」
という意味は、
「関数の変数の値の範囲が、その関数の微分係数が有限の値になる条件を満足する値に限られる」
という意味です。
「関数の微分係数を有限の値にしない変数の値を除外すれば良い」という意味です。

関数の微分が存在しない例として、以下の2つの図の関数:
y=f(t)
t=g(x)
の合成関数を使って、
合成関数の微分の公式の信頼性を調べてみます。
y=f(t):
(図1)

t=g(x):
(図2)

関数f(t)はt=0でtによる微分が存在しません。
そのため、t≠0の場合だけに、合成関数の微分の公式を適用します。

 ここで、この問題の意図が良く分かるようにするため、この合成関数の形を下図に描きます。
y=f(g(x))=h(x):
(図3)

この合成関数h(x)の、xがー1から1までの間の関数の値は良く分からないので、点線でごまかしました。

 このあいまいさが気持ち悪い人のために、関数f(x)を以下のグラフのように定義することができます。 
(図4)

 この場合に、関数t=g(x)は図2のままにすると、合成関数h(x)は、以下の図5になります。
(図5)

以下で、関数f(t)の微分で、有限の確定した微分係数が存在する変数 t の定義域である、
t≠0
の場合だけに合成関数の微分の公式を適用します。
先ず、t=g(x)≠0を満足する条件の1つの、
x<−1の場合を計算します。
次に、t=g(x)≠0を満足する残りの条件の、
 x>1の場合を計算します。
以上で得た結果をまとめると、
関数f(t)については、(dy/dt)=f’(t)の有限の微分係数が存在するtの範囲は、t≠0である範囲である。
関数g(x)については、xのどの値でも有限の微分係数が存在するので問題無い。
制限された範囲であるt≠0を満足するt=g(x)のxの範囲は、
x<−1 or x>1
である。
そのxの範囲内で、
合成関数の微分を計算すると、以下の結果が得られた。
(計算おわり)

(補足)
 ここで、合成関数h(x)が図5の形になる場合に、
−1<x<1の間で
h’(x)=0
になっています。
しかし、合成関数の微分の公式では、
−1<x<1の間で
h’(x)=0
となることを導き出すことができませんでした。
 このことから、
合成関数の微分の公式では、0を0で割り算することになる部分で、合成関数の一部の微分係数が計算できないことがある、
ということがわかりました。

(補足2)
 以上の調査の結果を見ると、
合成関数の微分の公式の縛り(成立条件)である
「f(t)の微分が存在し(確定した有限値になる)、
t(x)の微分が存在する(確定した有限値になる)」
という前提条件は、
「式を0で割り算する計算をしてはいけない」
という計算の縛りと同じ様な意味を持っていることがわかります。

 すなわち、「微分可能」という前提条件は、
「0で割り算しない場合に限る」という前提条件 、
言いかえると、
「計算の違反が無い計算に限る」という前提条件、
を加えて微分の式を書くことだと考えます。

 そういう「万能の条件」を正しく組み込んで計算するならば、どの様な計算もできてしまいます。
(その条件を正しく組み込まないでその計算をまねした計算は計算違反がある誤った計算になります)
その通りに、どの様な計算もできるのが、合成関数の微分の公式やその他の公式が成り立つ根拠だと考えます。

リンク:
高校数学の目次



2017年07月25日(Tue)▲ページの先頭へ
逆関数や合成関数の概念
高校1年に2次関数を学びましたが、
高校2年になると、3次関数や4次関数や分数関数を学び、
三角関数も学びました。

そして、指数関数や対数関数も学びます。

高校2年では、このように多くの関数を学びますが、
以下の関数の概念も覚えましょう。

ここをクリックした先のページのpdfの18ページ(「微分積分学入門」著者:横田 壽)に、関数の定義が書いてあります。

1.1 関数の定義(definition of function)
 2 つの集合の間の関係を決める規則を関数といいます.ここでは,実数の集合を考えます.
Rを実数全体の集合とします.
ある実数の集合D に属する各数x に対して,実数y が1 つ定まるような規則f を、
D からR への1 価関数(single-valued function),

または単に関数といいます.

ここをクリックした先のページのpdfの(「微分積分学入門」著者:横田 壽)は、
とても明瞭に数学の関数・極限・微分・積分を説明してくれていますので、
高校数学でも、大学の数学でも、関数や微分・積分の何でも、わからないことがあったら、このpdfファイルをダウンロードして読めば、きっと、そのわからない問題が解決すると思います。

(1)逆関数:
逆関数という関数の概念があります。

ここをクリックした先のページのpdfの21ページ(「微分積分学入門」著者:横田 壽)に、逆関数の定義があります。

逆関数(inverse functions)
関数f の定義域D(f) 内の任意の2 数x1, x2 に対して,
x1 ≠ x2 ⇒ f(x1) ≠ f(x2)
が成り立つとき, f は1 対1 の関数(one-to-one function) であるといいます.
(f は(写像として)単射である (injective) とも言います。)


ここで、
x1 ≠ x2 ⇒ f(x1) ≠ f(x2) とは,
x1 とx2 が異なるならば, f(x1) とf(x2) は異なることを意味しています.
この場合,値域R(f) の各数y に対して, y = f(x) であるようなx を1 つ定めるような規則が考えられます(なぜでしょうか).
これをf の逆関数(inverse function)とよび,
f には逆関数が存在するといいます.


y=f(x)
という関数があれば、
関数の値が減少から増加に転ずる点がある場合は、
その点で関数を2つに分割する必要があります。
そうしないと、
その点の前後で複数のxに同じyが対応することになってしまうからです。
複数のxに同じyが対応してしまうと、その関数には、以下で説明する逆関数が作れなくなってしまうので都合が悪いからです。

そのようにて、1対1対応の関数として定義した関数には「逆関数」が存在します。
x=f -1(y)
という逆関数があります。

逆関数は、変数xとyの立場を入れ替えることで作れます。
その逆関数の形を以下の式3のグラフで描くことができます。
式3が逆関数の形をあらわしています。

「ある関数 f に対して逆関数 f−1 が存在する」という表現はくせものです。
なぜなら、ある関数 y=f(x) のグラフがあれば、そのグラフのxとyを入れ替えたグラフを考えて、その入れ替えたグラフから、以下のようにして、逆関数 f−1 のグラフを考え出すことができるからです。
(1)逆関数 f−1 のグラフが1つの変数に対して2つの値を持つ場合には、グラフを分割して、分割された逆関数 f−1グラフでは、1つの変数に対して1つの値しか持たないようにする。そして、その元の関数 y=f(x) のグラフもそれに対応して分割する。
(2) そうすれば、分割された元の関数 y=f(x) が、分割された逆関数 f−1 のグラフに対応する逆関数 f−1 を持つ。
(3)そうすれば、どの関数も逆関数を持つことにできるのではないか?
という疑問が生まれるうさんくささがあるからです。 

しかし、以下の事例のように、グラフを分割する操作では対応し切れず、本当に逆関数が存在し得ない場合もあります。 

下の図のグラフのように、xの値が少し変わっても t の値が同じ値になる関数の部分では、
複数のxに1つの t が対応します。

その関数の部分には逆関数が存在出来ません。
無理に逆関数のグラフを作ろうとすると、そのグラフは下の図のように、垂直に立つグラフになってしまい、1つの変数 t に対して複数の値が与えられることになってしまうからです。
1つの変数に1つの値を対応させる関数のグラフにすると下の図のように、形が変わってしまいます。
この場合には、絶対に逆関数が存在し得ないグラフの部分(関数の一部分)がありました。

 一方で、以下のグラフの不連続関数f(x)であっても逆関数を持ちます。
 以下のグラフの不連続関数f(x)も1つの一体の関数として逆関数を持ちます。
 以下のグラフABCDで表す不連続関数f(x)は、所定の点で2つの関数に分割することで、分割されたそれぞれの関数が逆関数を持つようにできます。
そのために関数を分割する点は、点Bで関数を分割しても良いし点Cで関数を分割しても良いです。

(2)合成関数:
 合成関数という関数の概念があります。

ここをクリックした先のページのpdfの21ページ(「微分積分学入門」著者:横田 壽)に、合成関数の定義が書いてあります。 

合成関数(composite functions)
 関数どうしのつなぎ方として,
合成法則(composition) とよばれる方法について考えます.
まず, f(x) とg(x)2 つの関数を用意します.
次に任意のx に対して規則g を用いて1 つの実数g(x) を取り出します.
もしこのg(x) が関数f(x) の定義域に入っていれば,
規則f を用いて1 つの実数f(g(x)) を取り出すことができるでしょう.
ところで,この実数f(g(x)) は何なのでしょうか.
もしg(x) の値域がf(x) の定義域に含まれていれば,
g(x) の定義域内の各数x に対して, f(g(x)) を作ることができます.
これはg(x) の定義域内の各数x に対し,ただ1 つの実数f(g(x)) を定める規則と考えられます.
よってこの規則をf とg の合成関数(composite function) といい,
f ◦ g で表わすと(f ◦ g)(x) = f(g(x)) となります.


以下に合成関数の例をあげます。
 上の式はxの関数hを合成関数の形で表現しました。
関数hは、gというパラメータ関数を使って、式1と式2とであらわした、結局は式3の形のxの関数です。
hは、式1の形と式3の形との2つの形の式であらわすことができます。
 この関数hは、以下の形の合成関数の形であらわすこともできます。
 式3の形の関数hは、sというパラメータ関数を使って、式4と式5であらわすことができます。
hは、式4の形でもあらわせます。
パラメータ関数を自由に選ぶことで式3のxの関数hは、式1や式4の形やその他の形の無限に多くの形であらわすことができます。

【逆関数定理】
x1 ≠ x2 ⇒ f(x1) ≠ f(x2)
が成り立ち, f が1 対1 の関数(one-to-one function) であるとき、以下の図の1対1の写像の関係があります。

1対1の写像をする関数 f には逆関数が定義できます。
そこで、関数 f で1対1の写像をした後で、逆関数で定義される1対1の写像をする、合成関数の写像をすれば、以下の図の様に元に戻ります。
また、逆写像の変数yの定義域の変数yに対して逆写像で1対1の写像をした後で、関数 f で定義される1対1の写像をする、合成関数の写像をすれば、以下の図の様に元に戻ります。
これは、逆関数定理と呼ばれています。

リンク:
高校数学の目次



2017年07月24日(Mon)▲ページの先頭へ
高校2年生も覚えるべき合成関数の微分の公式
「微分・積分」の勉強

(5)微分の知識:
高校2年生から、極限・微分・積分の「意味がわからない」「つまらない」「教わる計算方法が正しいと言える理由(証明)がわからない」で数学の学習から脱落する高校2年生が多いらしい。
 その脱落の原因は、どうやら、合成関数の微分の公式らしい。

高校3年の教科書の合成関数の微分の公式の証明が間違っているのと、(高校2年に微分を教える際に合成関数の微分の公式を教えない教育が1955年ころから続いている)のが、「微分の意味がわからない」原因になっているのではないかと考えるので。
 その間違いを正すことで、数学の学習から脱落する者を減らすため、 合成関数の微分の公式を教科書よりも正確に証明します。

 合成関数の微分の公式は、以下の公式です。
以下の様に微分の計算を楽にするときに使う公式です。
(合成関数とは)
 そもそも、「合成関数」とは何なのか、という問題があります。

ここをクリックした先のページのpdfの21ページ(「微分積分学入門」著者:横田 壽)に、合成関数の定義が書いてあります。 

合成関数(composite functions)
 関数どうしのつなぎ方として,
合成法則(composition) とよばれる方法について考えます.
まず, f(x) とg(x)2 つの関数を用意します.
次に任意のx に対して規則g を用いて1 つの実数g(x) を取り出します.
もしこのg(x) が関数f(x) の定義域に入っていれば,
規則f を用いて1 つの実数f(g(x)) を取り出すことができるでしょう.
ところで,この実数f(g(x)) は何なのでしょうか.
もしg(x) の値域がf(x) の定義域に含まれていれば,
g(x) の定義域内の各数x に対して, f(g(x)) を作ることができます.
これはg(x) の定義域内の各数x に対し,ただ1 つの実数f(g(x)) を定める規則と考えられます.
よってこの規則をf とg の合成関数(composite function) といい,
f ◦ g で表わすと(f ◦ g)(x) = f(g(x)) となります.


以下に合成関数の例をあげます。
 上の式はxの関数hを合成関数の形で表現しました。
関数hは、gというパラメータ関数を使って、式1と式2とであらわした、結局は式3の形のxの関数です。
hは、式1の形と式3の形との2つの形の式であらわすことができます。
 この関数hは、以下の形の合成関数の形であらわすこともできます。
 式3の形の関数hは、sというパラメータ関数を使って、式4と式5であらわすことができます。
hは、式3の形や式4の形であらわせました。
式3で表されるxの関数hは、パラメータ関数 g(x) や s(x) を自由に選ぶことで式1や式4の形やその他の形の無限に多くの形であらわすことができます。 

以下の合成関数の微分の公式:
は、関数f(g)とg(x)があり、その関数の合成関数の、
y=f(g(x))=h(x)
という関数を作った場合に、
f’(g)=(df/dg)と、
g’(x)=(dg/dx)との積が、
h’(x)=(dh/ dx)になる、
という公式です。

どの関数f(g)とg(x)についても、公式の成立条件が満足されれば、公式が成り立つ、という公式です。

この公式には一定の縛り(成立条件)があります。それは、「(dh/dg)=f’(g)の有限の値の確定した値の微分係数が存在し、(dg/dx)=g’(x)の有限の値の確定した値の微分係数が存在する(微分可能)」という前提条件です。

「関数が微分可能(有限の値の確定した値の微分係数が存在する)」
という意味は、
「関数の変数の定義域の範囲が、その関数の微分係数を確定した有限の値にする、変数の値の集合に限られる」
という意味です。
「関数の微分係数の値が確定しない、また、微分係数の値を有限の値にしない、変数の値を定義域から除外すれば良い」という意味です。

 合成関数の微分の公式が以下の式で表現されることがあります。
 こう書くと変数hとxとgの間の関係をあらわす式と誤解されやすいと思います。
 しかし、合成関数の微分の公式は、変数の間の関係式では無く、関数の微分の関係式です。
(dh/dg)は、hをgであらわす関数f(g)が存在し、しかも、その関数の微分(df(g)/dg)が有限の値の確定した値の微分係数を持たなければなりません。
また、(dg/dx)は、gをxであらわす関数g(x)が存在し、しかも、その関数の微分(dg(x)/dx)が有限の値の確定した値の微分係数を持たなければなりません。
 それらが成り立つことが、合成関数の微分の公式が成り立つ大前提です。 

 微分の計算で使う全ての変数yやxやその他の媒介変数g同士は、必ず、その変数を他の変数であらわす不変な関数で結ばれているという大前提があります。
その関数はどの式であっても良いですが、計算の途中で変化することが無い、いつも変わらない関係式であることが微分の計算の大前提です。

合成関数の微分の公式は、以下のように証明できます。

(証明開始) 
合成関数の微分の公式を以下の式で表すことにします。
この式で、h=f(g(x))という合成関数です。

(1)先ず、h=f(g)をgの関数と考え、hはgが変化したときにどのくらい変化するか調べるため、h=f(g)をgで微分する。
h=f(g)がgで微分可能((Δh/Δg)の極限が有限の値になる)なら、
Δhが以下の式であらわされる。
(2)その場合に、以下の式が成り立つ。
(証明おわり)

(別の証明)
 ここをクリックした先のページのpdfの75ページ(「微分積分学入門」著者:横田 壽)に、もっと鮮やかな合成関数の微分の公式の証明を見つけました。それは、以下のようにする証明です。
(証明開始)
「h ≡ f(g)のgによる微分が存在し(確定した有限値になる)、
g(x)のxによる微分が存在する(確定した有限値になる)」場合:
 (証明おわり)

(補足1) 
 合成関数の微分の公式は、以下のように式の項を作っている関数のかたまりで微分して、後で、その関数のかたまりを微分するという計算を可能にします。
(検算)この答えが正しいか否かを、以下のグラフを思い描いて確認してください。
想像したグラフの傾きがマイナスであることと、微分計算結果の式がマイナスになることが一致しているので、この計算結果が正しそうだと確認できました。
(検算おわり)

 合成関数の微分の公式を使うことにより、微分の計算がだいぶ楽になる。合成関数の微分の公式は、微分の計算にとって、生物が必要とする空気のように必要な公式です。

(補足2)
 この合成関数の微分の公式には縛り(成立条件)があります。
それは、
「h ≡ f(g)のgによる微分が存在し(確定した有限値になる)、
g(x)のxによる微分が存在する(確定した有限値になる)」
という前提条件です。

---(定義2.1 「微分積分学入門」(横田 壽)67ページ---
関数f(x) がx0 を含むある区間で定義されているとき,極限値
が存在するならば,
関数f(x) は, x = x0 微分可能(differentiable) であるといいます.
また,この極限値A を点x0 における微分係数といい,

で表わします.
-----(定義おわり)---------------------------

この、有限の微分係数が存在する(微分可能)という前提条件は、いわば、
「式を0で割り算する計算をしてはいけない」
という計算の縛りと同じ様な意味を持っています。

 すなわち、「微分可能」という前提条件は、
「0で割り算しない場合に限る」という前提条件 、
言いかえると、
「計算の違反が無い計算に限る」という前提条件、
を加えて微分の式を書くことです。

 そういう「万能の条件」を正しく組み込んで計算するならば、計算の自由度が高くなります。
 『合成関数を構成する2つの関数が何れも「微分可能=微分係数が有限の確定値になる」であるように関数の変数の定義域を定める』という前提条件付きで、パラメータ関数 g(x) や s(x) を自由に選ぶことができます。

その様に計算の自由度を高くするから合成関数の微分の公式が成り立つのだと考えます。

リンク:
高校数学の目次



逆関数の微分の公式
「微分・積分」の勉強

(5)微分の知識:

【逆関数の微分の公式の証明】
 念のために、以下で、xをyの関数と考えた逆関数の微分の公式を証明します。

(証明開始)
(1)先ず、xをyの逆関数と考え、xは、yが変化したときにどのくらい変化するか調べるため逆関数xをyで微分する。
xがyで微分可能((Δx/Δy)の極限が有限の値になる)なら、
Δxが以下の式であらわされる。
(2)その場合に、以下の式が成り立つ。
(証明おわり)

 こう考えれば逆関数の微分の公式が自然に証明できます。

上の公式は、下のグラフのように、逆関数は、元の関数に対して、直線y=xに関して対称なので、その傾きが元の関数の傾きに対して、対称な傾きである、逆数の値の傾きになる、
ということを意味している。

 ここで、逆関数の微分の公式の縛り(成立条件)である
「xのyによる微分が存在する(確定した有限値になる)」、 
という前提条件は、
「式を0で割り算する計算をしてはいけない」
という計算の縛りと同じ様な意味を持っています。

 すなわち、「微分可能」という前提条件は、
「0で割り算しない場合に限る」という前提条件 、
言いかえると、
「計算の違反が無い計算に限る」という前提条件、
を加えて微分の式を書くことです。

 そういう「万能の条件」を正しく組み込んで計算するならば、どの様な計算もできてしまいます。
その通りに、どの様な計算もできるのが、逆関数の微分の公式やその他の公式が成り立つ根拠だと考えます。

リンク:
高校数学の目次



2017年07月18日(Tue)▲ページの先頭へ
合成関数の微分の公式と微分の連鎖律
「微分・積分」の勉強

(5)微分の知識:
 以下の合成関数の微分の公式があります。
以下の様に微分の計算を楽にするときに使う公式です。
(この公式には一定の縛り(成立条件)があります。それは、「f(g)の微分が存在し、g(x)の微分が存在する(微分可能)必要がある」という前提条件です。)
関数の微分が存在しない典型的な例として、以下の図の関数yはx=0でxによる微分が存在しません。
(この関数yは、x→0において、他の変数のt=(1/x)による微分(dy/dt)についても、ー1から1まで振動し、安定しません)

合成関数の微分の公式である以下の式:
は、関数f(g)とg(x)があり、その関数の合成関数の、
y=f(g(x))=h(x)
という関数を作った場合に、
f’(g)=(df/dg)と、
g’(x)=(dg/dx)との積が、
h’(x)=(dh/ dx)になる、
という公式です。

どの関数f(g)とg(x)についても、公式の成立条件が満足されれば、公式が成り立つ、という公式です。

この公式には縛り(成立条件)があります。その縛りは、「(dh/dg)=f’(g)の有限の微分係数が存在し、(dg/dx)=g’(x)の有限の値の微分係数が存在する(微分可能)」という前提条件です。

「関数が微分可能(有限の値の微分係数が存在する)」
という意味は、
「関数の変数の値の範囲が、その関数の微分係数が有限の値になる条件を満足する値に限られる」
という意味です。
「関数の微分係数を有限の値にしない変数の値を除外すれば良い」という意味です。

実はこの合成関数の微分の公式は以下の同様な式で表された公式群の一部です。
この各公式には、先ず、以下の縛り(成立条件)があります。
その縛りというのは、
「上の式の様に微小量の割り算であらわした式の、ΔhもΔgもΔxも、何れも微小量でなけばならない」
とういう条件です。
例えば、関数g(x)=(1/x)を使った場合、
Δg=Δ(1/x)が、

x→0で、微小量にならないから、
x→0の場合には、関数g(x)=(1/x)を使うことができません。

また、更にその上に、各関数の微分可能条件も(あたりまえの条件のように見えますが)あえて意識する必要があります。
その理由は、xの位置に応じて、Δgが正から0になって負に変わる場合も考えられるからです。

「関数が微分可能(有限の値の微分係数が存在する)」
を規定する意味は、
「関数の変数の値の範囲が、その関数の微分係数が有限の値になる条件を満足する値の場合に限って公式が適用できる」
という意味です。
「この公式を構成する関数に対して:各関数の微分係数を有限の値にしない変数の値があれば、その値をその変数の範囲から除外すれば良く、その値を除外した変数の範囲内で公式が適用できる」という意味です。

(注意)
以下の式で:
Δgが微小量より更に小さい真正の0になる場合を考えずに合成関数の微分の公式を証明したつもりの偽証明が流通しています。自分の「分からないものは分からない」センスを大切にして、偽物に騙され無いように、注意しましょう。

 Δgが微小量より更に小さい真正の0になる場合は、以下で詳しく調べます。それ以外の場合は微小量の割り算で公式が説明できるので、高校2年生でも、以下の説明を読んで、その後は公式を覚えてしまいましょう。

Δgが微小量より更に小さい真正の0になる場合を、以下の合成関数の例で考えます。
【事例1】
 次に、以下の微分を考えます。
この式5を見ると、
x→0
の場合に、関数gの微分が:
となり、微分が0になることがわかります。
その場合は、
Δg=0(微小量より更に小さい真正の0)になります。

(dh/dg)が微分可能(値が確定した有限値になる)なら、
となるので、
Δxに対してΔgが真正の0になるのと同時にΔhも真正の0になります。
そのため、
x→0の場合に、
になります。実際に式3をxで微分すれば、その通りになっていることがわかります。
この関数hの微分を、Δgを含めて展開すると:
となります。
 このように、ほとんどΔg=0である(真正の0である)とも言える関数g(x)の場合にも、
Δgが真正の0で無いただの微小量の場合と同じ形の公式:
が成り立っていました。
 この事例は、0では無い小さなΔxが存在すれば、 ΔgがΔxの2乗程度の極めて小さい値になりますが、Δgは厳密には0にはならないので助かりました。

 しかし、以下の図のような、有限な範囲でg(x)の値が一定値で続く関数g(x)の場合は、0では無い小さなΔxに対して厳密にΔg=0になります。(この関数gは−1<x<1の範囲でg(x)=0であり、かつ、(dg/dx)=0です)。そういう関数g(x)の場合には、この事例の計算方法では、正しい答えが得られません。
 その場合にも有効な結果を得る計算方法が以下の様に考えられます。
着目点は、hが微分可能であれば、(Δh/Δg)の値は、Δgがどれだけ小さくても値が安定して(dh/dg)に収束することです。
 計算の初めの時点から、(Δh/Δg)の式のかわりに、有限値の微分の値(dh/dg)を使って計算するならば、上の計算は、
有限値(dh/dg)・(値が0に収束する(Δg/Δx))
の計算に置き換えることができます。
そうすれば、小さなΔxでΔgが厳密に0(真正の0)になっても、
式の中でΔgが分母に来ることが無いので、
Δgがどうであれ合成関数の微分の公式が成り立ちます。

 hのgによる微分が有限の値の(dh/dg)に収束する(微分可能)ならば、合成関数の微分の公式を成り立たせる結果を導き出せます。

【合成関数の微分の公式の別の証明】
 上の事例でΔgが真正の0になる場合を考えましたが、Δgが真正の0になるという発想は、Δxが0で無い場合にΔgが真正の0になる場合があるという、g(x)の関数の性質に由来する問題です。
 以下では、hをgの関数と考え、gをxの関数と考え、g(x)の関数の性質に左右されない証明をします。

(証明開始)
(1)先ず、hをgの関数と考え、hはgが変化したときにどのくらい変化するか調べるため、hをgで微分する。
hがgで微分可能((Δh/Δg)の極限が有限の値になる)なら、
Δhが以下の式であらわされる。
(2)その場合に、以下の式が成り立つ。
(証明おわり)

 こう考えれば合成関数の微分の公式が自然に証明できます。
この証明の中には、Δx≠0のときにΔgが0(真正の0)になる場合も含まれています。
(1)で考えた(Δh/Δg)は、gが変化する場合のhの変化の割合を調べたものであり、gが変化しないならhも変化しないと考えています。
そして、(2)では、Δgが0になる場合も考慮されています。
すなわち、
(2)では、
Δg=0なら、
Δh=0になり、
(Δh/Δx)=0
になります。

 また、変数xのある値で、(Δh/Δx)≠0となる場合に(Δg/Δx)=0となる不適切な関数g(x)を選んだ場合は、
変数xのその値でΔgが真正の0になります。それとともに、変数xのその値に対応するg(x)の値では、関数hのgによる微分(Δh/Δg)が無限大になろうとし、関数hがその値のgでは微分可能では無くなります。
そのため、そのようにdg/dx=0とする変数xの値(そのxに対応するg(x)の値)においては、公式が適用できなくなります。
 「関数が微分可能」という条件は、このように、不適切な関数g(x)が使われる場合でも、変数xの定義域の範囲、および関数hを微分する変数としてのgの値の定義域の範囲を、公式が適用できる範囲に制限することで公式を守っています。

なお、以上の証明の基礎となった以下の置き換えの公式(微分された関数が微分可能であることを前提にする)があります。これは、その他の全ての公式の証明に使えます。

【事例2】
 次に、各関数が微分可能では無い場合にどうなるかを事例2で調べます。 
以下の合成関数を考えます。
ここで、式2から、
x→0
の場合に、
g→0となります。

次に、以下の微分を考えます。

この式5を見ると、
x→0
の場合に、関数gの微分が0になることがわかります。
すなわち、
Δg=0(微小量より更に小さい真正の0)です。
一方、式4を見ると、
g→0 (x→0)
の場合に、
(dh/dg)=±∞ になり、
関数hが(gの値が0の場合は)変数としてのgで微分可能(確定した有限値の微分係数を持つ)では無いことがわかります。また、関数hは、gの値が0以外の値の場合は、変数としてのgで微分可能であることがわかります。
そのため、
g→0 (x→0)
の場合に、
合成関数の微分の公式が成り立ちません。
公式が適用できないことは以下のように確かめられます。
式3を直接にxで微分すれば、
になります。
その結果と、

x→0 の場合に、式5から得た
とを合わせた公式の式:
は計算できません。
 一方、xの値が0以外の値(同時にgの値が0以外の値)の場合は問題が無く、合成関数の微分の公式が適用できます。
(この事例からも、各関数の微分可能性が、合成関数の微分の公式に必須な条件だと分かります) 

この公式は微分の連鎖律と呼ばれています。

「f(g)の微分が存在し、g(x)の微分が存在する必要がある」という前提条件の意味を、更に以下の事例3でも考えます。

【事例3】
 以下の合成関数を考えます。
次に、以下の微分を考えます。
この式5を見ると、
x→0
の場合に、関数gの微分(確定した有限値の微分係数)が存在しないことがわかります。
そもそも、微分をする以前に、
x→0
の場合に、関数gはプラスマイナス無限大になるので、
x=0は関数gの定義域から外れます。
そのためx=0では(定義域の外ですので)関数gは使えません。

また、式4を見ると、
g→0 (x→±∞)
の場合に、関数 f の微分が存在しないことがわかります。

そのため、以下の計算は、
x ≠ 0 (g ≠ ±∞) and  x ≠ ±∞ (g ≠ 0)
の場合にのみ適用できます。
x=0の場合の関数 f の微分については、
式3を直接xで微分して確かめる必要があります。

 以上の調査の結果を見ると、
合成関数の微分の公式の縛り(成立条件)である
「f(g)の微分が存在し(確定した有限値になる)、
g(x)の微分が存在する(確定した有限値になる)」
という前提条件は、
「式を0で割り算する計算をしてはいけない」
という計算の縛りと同じ様な意味を持っていることがわかります。

 すなわち、「微分可能」という前提条件は、
「0で割り算しない場合に限る」という前提条件 、
言いかえると、
「計算の違反が無い計算に限る」という前提条件、
を加えて微分の式を書くことだと考えます。

 そういう「万能の条件」を正しく組み込んで計算するならば、どの様な計算もできてしまいます。
(その条件を正しく組み込まないでその計算をまねした計算は計算違反がある誤った計算になります)
その通りに、どの様な計算もできるのが、合成関数の微分の公式やその他の公式が成り立つ根拠だと考えます。

リンク:
高校数学の目次



2017年07月17日(Mon)▲ページの先頭へ
微分するための極限の極意
「微分・積分」の勉強

(3)微分から極限に:
 以下の微分の問題を考えると大きな壁に直面します。
 この問題で微分を求めようと計算を進めてみます。
この式2まで計算できますが、その先には進めなくなりました。
以下の式を求める方法が無ければ、先に進めません。
この式の計算をできる方法を知ることが「極限」を学ぶということです。

(極限を学ぶ)
以下の単位円の角度を考えます。
この図の三角形OAHの面積と扇形OBAの面積の大小関係からsinθとθの大小関係を考えます。
先ず、この式3の大小関係が分かります。
次に、扇形OBAの面積と三角形OBTの面積の大小関係から以下の大小関係も考えます。
この式4の大小関係と式3の大小関係を合わせて、sinθより小さいものと大きいものが考えられました。
それを整理すると以下の式5になります。

この大小関係の式5をθで割り算した式の極限を求めます。
その計算の際に、極限では、
f<g<h
が、
f≦g≦h
となり得るので、
式5の不等号には等号も加えて以下の計算をします。
この様に、sinθの式を間に挟み込む2つの式の極限を計算することで、
式6の様に挟みこまれたsinθの式の極限が計算できました。
これが「極限」の極意(奥義)です。

(注意)この計算は、厳密には、θ<0の場合も確認する必要があります。

 この式6を使うと、先に途中まで考えた微分の計算を進めることができ、以下の式7まで微分を計算することができました。

リンク: 
高校数学の目次



2017年07月16日(Sun)▲ページの先頭へ
極限:ロピタルの定理の一部
「微分・積分」の勉強

(3)極限:
 以下の極限の問題があるとき、対応に困ります。
 この問題では、極限の計算をしようとすると、0を0で割らなければならないので困ります。
この問題を解くには、以下の様に考えると問題がやさしくなります。
この様に、微分を利用すると、極限の計算が楽になります。
これは
媒介変数表示による関数の微分法であり、ロピタルの定理の一部でもあります。
(ロピタルの定理は、上式のような微小量で微分する場合以外にも成り立つ定理です)

この問題の式は、0に近い関数f(x)を0に近いxで割ることで微分係数を求める式に以下の点で似ています。

すなわち、問題の式は、0に近い関数f(x)を、 xを媒介変数にした0に近い分母の関数g(x)で割ることで、関数f(x)を関数g(x)で微分する式であると解釈できます。
そういう微分は、以下の様に変換できます。
媒介変数表示による関数の微分法は、この重要な数学的意味を伝えるという、微分を理解する重要なかなめ石としての役割を持っています。

媒介変数表示による関数の微分法は、xの微小量を使って分子の関数 f と分母の関数 g を微分します。
ここをクリックした先のページのpdfの78ページ(「微分積分学入門」著者:横田 壽)を参照

この概念を教えないならば、それは、微分の概念を本気で教えるつもりが無いということだと思います。

(注意)

 ロピタルの定理は高校では教えないことに決まっています。
そのため、高校の数学の試験問題では、ロピタルの定理を使って問題を解答してはいけません。


ただし、「ロピタルの定理」という言葉を使うのでは無く、上の式のように、媒介変数表示による関数の微分法をその場で導き出して使うならば、使っても大丈夫と考えます。

 大学入学試験では、
媒介変数表示による関数の微分法を使って解答して良いです。ロピタルの定理も使って良い(但し間違って適用する誤答をしないこと)と考えます。大学入学試験では、進んだ知識を持っていることは入学を拒否する理由にはならないからです。

 「ちょっと便利な方法だけを、深い理解無しで教えるのは良くないから」というのがロピタルの定理を無視する方針の根拠と考えます。ロピタルの定理を教えない方針に引きずられて、それに近い公式の媒介変数表示による関数の微分法も教えていないのではないかと考えます。
 しかし、一見正当に見えるその理由も、
「学生の深い理解に至るまでとことん教えるのは面倒だから、それはやらない。」
という理由の言い換えにすぎず、間違っていると考えます。
学生が必要に応じその場で媒介変数表示による関数の微分法を導き出して使うように教えるのが正しい教育と考えます。 

 先生が高校生に本当に数学を教えることができるように先生の立場を守ることができない日本の教育体制の問題がここにあらわれているのだろうと考えます。

 このような矛盾をかかえた教育では、「数学の試験」は、生徒の実力を正しく測る絶対的な方法ではなく、便宜的なものにすぎないと考えます。
 そのため、数学を学ぶ者は、試験の結果をあまり気にせず、自分の「わかった」という心に従って数学を学ぶのが良いと考えます。

リンク: 
高校数学の目次



2017年07月15日(Sat)▲ページの先頭へ
微分:等加速度運動の発見
「微分・積分」の勉強

(2)微分:
 以下の現象があります。

 水平方向に打ち出された玉が時間とともに放物線を描いて落下していく(高さhが下がっていく)という現象があります。
 この問題は、以下の様に解釈できます。

玉の高さhの時間変化は、玉の落下速度vをあらわします。
 
そして、玉の落下速度の時間変化は、加速度をあらわします。
放物線運動を微分していくと、その運動の原因が等加速度運動にあることがわかります。

リンク: 
高校数学の目次



2017年07月13日(Thu)▲ページの先頭へ
円と放物線が接する条件(2)
(2つのグラフが接する条件を求める問題)

【問】
 以下の2つの式であらわされる円のグラフと放物線のグラフが接するkの条件を求めよ。

【解答】
 先ずは、下図のようなグラフを描いて、問題の見通しを良くしてから問題を解きます。
図から、接点は、y=−1の点とy=1の点と、それ以外にy座標が−1/2程度の2つの点との合計4点あると、見通しを立てます。
(それをそのまま解答にしても良い)

接点を求める問題は、微分で接点の条件を与える方程式を作ることが計算を少なくできるコツです。

そのため、以下で、微分を利用して接点の条件を与える方程式を作ります。

これにより:
この式5bと先の2つのグラフの式2つとの、2変数の3つの式を連立させて、kを求める問題に変換できました。
式5bから、以下の式6が得られます。
以下で、この式の2つの場合に分けて、解を求めます。
 これにより、以下の第1の解の群が得られた。
次に、式6のもう1つの場合の解を求めます。
これにより、以下の第2の解の群が得られた。
よって、式1のグラフと式2のグラフが接するようにするkの値は、
k=±1, −5/4
の3つです。
(解答おわり)

(補足)
 式6bの場合の第2の解の群は、微分を用いないでも、以下の様にして接点が2重解を持つ条件から導くことができます。
(1)+(2):
この2次方程式は、
k=−5/4
の場合に2重解を持ちます。
 しかし、その2重解が接点をあらわすことはあまり明確ではありません。
また、この2次方程式にこだわると、
式6aの場合の接点の第1の解の群を見落とす恐れがあります。
 そのため、接点を求める計算では、
微分を利用した接点の条件の式5bを使って、式6aと式6bを導き出す明確な計算によって接点を計算する方が望ましいです。 

リンク:
高校数学の目次



2017年07月12日(Wed)▲ページの先頭へ
円と放物線が接する条件
(2つのグラフが接する条件を求める問題)

【問】
 以下の2つの式であらわされる円のグラフと放物線のグラフが接するkの条件を求めよ。

【解答】
 先ずは、下図のようなグラフを描いて、問題の見通しを良くしてから問題を解きます。
次に、方程式1のあらわすグラフと方程式2のあらわすグラフの交点を計算します。
その解の交点が2重点になれば、それが、グラフが接する条件です。

 2つの方程式のグラフの交点を求めるために、
先ず、方程式同士を引き算して以下の式3を作ります。

 この式3は、式1と式2から作りましたが、
式2から得たxの式を式1のxに代入したのでは無く、
xの二乗を代入することでxを消去したので、式の代入方法に無理があります。

このような場合に、
確実に計算をするためには:
この式3を得た時点で、
式1と式2との連立方程式が、
式3ともう1つの式(式1を使うことにする)との連立方程式に変換されただけであるとみなします。
式3は2つの直線を合わせた式なので、式3のあらわす2つの直線の1つづつと式1のグラフが交わる点を計算し、その解が、式1と式3の解です。

(注意)
「式3が重根y=−2を持つのがグラフが接する条件だ」
と考えることは、
条件が合えば、そう考えても良いが、
この問題の場合は、
式1 によって、
−1≦y≦1
なので、y=−2となり得ない。
そのため、この問題では、y=−2となる重解は存在しない。

式1と式3のグラフの交わる点の解が2重点を持つ(グラフが接する)場合が、以下のようにして求められます。 

(y座標の解は1つで、x座標の解は2つの解が重なった重解)
よって、グラフが接するkの条件は、
k=±1
です。
(解答おわり)

リンク:
高校数学の目次



2017年07月09日(Sun)▲ページの先頭へ
放物面鏡での光の反射
「微分・積分」の勉強

(2)微分:
 以下の問題を考えます。
【問題】 
 放物線鏡の中心面に垂直に入れた光(放物線の軸に平行な光)は反射してどこに行くか。
 この問題は、以下の様に解くことができます。

【解答】
先ず、放物線の軸に平行な光を点A(X,Y)に当てます(図ではX座標が1の場合を示す)。
光の反射方向を知るためにA点での鏡の傾きを近似的に計算します。
A点で反射した光は反射してY軸上のF点に達すると考えます。
A点近くの光と鏡面の関係を詳しくしらべます。
X座標の値がXである点Aでの放物線への接線がX軸と交わる点をCとします。またA点からX軸に垂直に下ろした点をBとします。
ここで、
なので、
三角形ACDの底辺CDの長さは近似的に、
と計算できます。 

線分ACに垂直な直線CBを考え、その直線を延長してY軸と交わる点をFとします。
∠ACB=∠R
です。
OC=X−CD=X/2
ですので、
OC=CD=X/2
です。
そのため
FC=BC
です。
二辺狭角が等しいので、
△AFC≡△ABC
です。
そのため
∠FAC=∠BAC
です。
よって、
直線FAは、
A点で反射した光線の通る道です。
FC=FB/2
です。
そのため、
OF=EF/2
です。
そして:
が得られます。
結局、光線は、どのX座標から入っても、
すべての光が点(0,1/4)に集光することがわかりました。
(解答おわり)

 この問題を解く過程で用いた、近似的な傾きを、「微分」という究極の傾きの式で表すことができます。

リンク: 
高校数学の目次



2017年07月03日(Mon)▲ページの先頭へ
2変数の3つの方程式の互除法で問題を解く(2)
(3つのグラフの交差点の重なりの有無の判定問題)

【問】
 以下の3つの式であらわされる3つのグラフの全てが通る点が存在するか否かを判定せよ。

【問題の趣旨】
 この問題のグラフは以下のグラフです。
 このようにグラフを描くと3つのグラフ全てが通る点が1つあるらしいことがわかります。
 この問題は、問題を研究するために易しくしたので種々の方法で解けます。

 ここでは、この問題を、以下で説明する、
「2変数の3つの方程式の互除法」
を使って解きます。 

「2変数の3つの方程式の互除法」
を使うと、
方程式の次数をさほど上げないままで計算する楽な計算により、共通解の有無を判定することができます。

【解答】
先ず、方程式同士を引き算して以下の式4を作ります。
この式4は、他の方程式に足し合わせて、他の方程式に含まれる2次の項xyを、xとyの1次の項の和に変換する道具として使います。
 次に、以下の式5を作ります。
この式5は、他の方程式に足し合わせて、他の方程式に含まれる2次の項xの2乗を、xとyの1次の項の和に変換する道具として使います。
 次に、以下の式6を作ります。
この式6は、他の方程式に足し合わせて、他の方程式に含まれる2次の項yの2乗を、xとyの1次の項の和に変換する道具として使います。

 また、方程式4、5、6の3つは、元の式1、2、3を置き換えた式の組であって、式1、2、3で解ける問題は、式4,5,6で解けます。
 次に、この式4,5,6に含まれる2次の項も、式同士を引き算して次数を下げます。その次数の下げ方は、以下の技術を使います。
 式4にxを掛け算した式を作ると、その式は、式4,5,6が適用できる式に変わるので、以下の互除法によって、式の次数を下げることができます。
 こうして、式4,5,6を使った互除法で式の次数を下げて1次式9が得られました。
 式4,5,6の組を置き換える他の1次式を、
この式9にxを掛け算した式に、式4,5,6を使った互除法を適用することで作ります。
 更に式9にyを掛け算した式に、式4,5,6を使った互除法を適用することでもう1つの1次式を作ります。
 こうして、式4,5,6を置き換える3つの1次式の組が作れました。この3つの式は、式1,2,3の次数を1つ下げた式の組です。

この3つの式9、11、13の共通解が、 元の式1,2,3の共通解です。この3つの式のグラフは以下の図のようになります。
 式9、11、13の解を求めると、以下の通り計算でき、3つの式に共通する解があります。
このように、式9、11、13は共通の解を持ち、
それは、式1,2,3の共通の解です。
(解答おわり)

リンク:
高校数学の目次



2017年07月02日(Sun)▲ページの先頭へ
2変数の3つの方程式の互除法で問題を解く
(3つのグラフの交差点の重なりの有無の判定問題)

【難問】
 以下の3つの式であらわされる3つのグラフの全てが通る点が存在するか否かを判定せよ。

【解答の方針】
 先ず、この問題のグラフを描いてみます。
すると以下のグラフが得られます。
 このようにグラフを描くと3つのグラフ全てが通る点は1つも存在しないことがわかります。
 この問題は難問ですので、この図を描けたら、
「図から、3つのグラフ全てが通る点は1つも存在しないことが分かる」
と解答しておきます。

 この問題を解く時間的余裕がある場合は、この問題が含む以下の落とし穴に注意しましょう。

(1)どれか2つのグラフの交点を求めて、その交点を残りのグラフの式に代入して、その計算結果が式を満足しないことを確認する方法が考えられます。
 しかし、この問題は「難問」として作られているので、グラフの交点を計算するためには4次方程式を解かなければならない。そして、1つの交点が計算できても、残りの交点は難しい無理数の式でしか解けない。
 その解は、少なくとも3次方程式以上の解の公式を使わないと交点が計算できない。その解の公式は複雑なので、それを知っていても、その公式を使っている間に試験時間が終わってしまう。
 この問題はそういう問題です。

(2)この問題は、上図の様に図を描いて解くか、
又は、以下で説明する、
「2変数の3つの方程式の互除法」
を使うことで解けます。 

 1変数の2つの方程式が共通の解を持つ場合では、
その2つの方程式に、ユークリッドの互除法を適用して、
最終的に定数項になる余りが0になるか否かで、
共通の解を持つか否かを判定します。
(3)この問題でも、2つのグラフの方程式から変数を1つ消去して1変数の方程式(それは4次方程式になる)を求めることができる。
(3)−1:グラフ1とグラフ2の交点のx座標の方程式を求める。
(3)−2:グラフ2とグラフ3の交点のx座標の方程式を求める。
その2つの方程式にユークリッドの互除法を適用して、2つの方程式が共通する解があるか否かを判定できる。

しかし、その計算は4次式を作って、その4次式にユークリッドの互除法を適用するので、方程式の次数が高いので計算が複雑で苦労します。

(4)そのため、以下で説明する、
「2変数の3つの方程式の互除法」
を使うことで、
方程式の次数をさほど上げないままで計算する楽な計算により、共通解の有無を判定します。

【解答】
先ず、方程式同士を引き算して以下の式4を作ります。
この式4は、他の方程式に足し合わせて、他の方程式に含まれる2次の項xyを、xとyの1次の項の和に変換する道具として使います。
 次に、以下の式5を作ります。
この式5は、他の方程式に足し合わせて、他の方程式に含まれる2次の項xの2乗を、xとyの1次の項の和に変換する道具として使います。
 次に、以下の式6を作ります。
この式6は、他の方程式に足し合わせて、他の方程式に含まれる2次の項yの2乗を、xとyの1次の項の和に変換する道具として使います。

 また、方程式4、5、6の3つは、元の式1、2、3を置き換えた式の組であって、式1、2、3で解ける問題は、式4,5,6で解けます。
 次に、この式4,5,6に含まれる2次の項も、式同士を引き算して次数を下げます。その次数の下げ方は、以下の技術を使います。
 式4にxを掛け算した式を作ると、その式は、式4,5,6が適用できる式に変わるので、以下の互除法によって、式の次数を下げることができます。
 こうして、式4,5,6を使った互除法で式の次数を下げて1次式9が得られました。
 式4,5,6の組を置き換える他の1次式を、
この式9にxを掛け算した式に、式4,5,6を使った互除法を適用することで作ります。
 更に式9にyを掛け算した式に、式4,5,6を使った互除法を適用することでもう1つの1次式を作ります。
 こうして、式4,5,6を置き換える3つの1次式の組が作れました。この3つの式は、式1,2,3の次数を1つ下げた式の組です。
この3つの式9、11、13の共通解が、 元の式1,2,3の共通解です。
しかし、この式9と式13を式11に代入すると、以下の式14のように、式11が満足されません。
そのため、この式9、11、13は共通の解を持ちません。
よって、式1,2,3は共通の解を持たない。
(解答おわり)

リンク:
高校数学の目次



   




新着トラックバック/コメント


カレンダ
2017年7月
           
         

アーカイブ
2009年 (56)
2月 (1)
3月 (14)
4月 (30)
5月 (11)
2010年 (31)
7月 (1)
8月 (17)
9月 (4)
10月 (7)
11月 (1)
12月 (1)
2011年 (105)
1月 (10)
2月 (11)
3月 (16)
4月 (31)
5月 (4)
7月 (12)
8月 (12)
9月 (5)
11月 (3)
12月 (1)
2012年 (28)
1月 (3)
2月 (8)
3月 (6)
4月 (8)
5月 (1)
7月 (2)
2013年 (149)
1月 (12)
2月 (36)
7月 (5)
8月 (7)
9月 (22)
10月 (26)
11月 (25)
12月 (16)
2014年 (27)
1月 (13)
2月 (12)
3月 (2)
2015年 (47)
1月 (1)
2月 (6)
3月 (8)
4月 (16)
5月 (11)
6月 (4)
12月 (1)
2016年 (55)
4月 (4)
8月 (4)
9月 (6)
10月 (6)
11月 (22)
12月 (13)
2017年 (124)
1月 (10)
2月 (2)
3月 (5)
4月 (5)
5月 (10)
6月 (13)
7月 (15)
8月 (12)
9月 (17)
10月 (23)
11月 (6)
12月 (6)

アクセスカウンタ
今日:351
昨日:3,015
累計:2,056,735