三角形の頂点からの距離の積の公式(その2)






2017年10月13日(Fri)
三角形の頂点からの距離の積の公式(その2)
以下の公式は、
円からはみ出す△AHD∽△AEBの公式
と覚えた方が良い。
【公式】
上式のように、三角形ABCの頂点Cから辺ABへ垂直に引いた線との交点Hに関する線分の積:
AH×AB
が、
辺BCを直径2sとする円の中心Oと頂点Aを結ぶ線と円との交点DとEに関する線分の積:
AD×AE=(AO)−s
に等しいことを証明しなさい。

(解答の方針) 
 辺の長さの積の定理は、相似図形では辺の比が同じであることに由来します。結局、辺の長さの積の定理は、ある相似図形に由来する定理です。そのため、この問題は、相似図形を探す問題です。
 この問題のように、辺の長さの積の定理の問題は、
(1)図の不足を埋めて図を完成させてから、
(2)相似図形を発見して、相似図形の辺の比が等しい式を書いて
問題を解くように心がけてください。

この公式の証明は、ここをクリックした先のページにあります。

リンク:
中学数学の目次




   




新着トラックバック/コメント


カレンダ
2017年10月
13
       

アーカイブ
2009年 (56)
2月 (1)
3月 (14)
4月 (30)
5月 (11)
2010年 (31)
7月 (1)
8月 (17)
9月 (4)
10月 (7)
11月 (1)
12月 (1)
2011年 (105)
1月 (10)
2月 (11)
3月 (16)
4月 (31)
5月 (4)
7月 (12)
8月 (12)
9月 (5)
11月 (3)
12月 (1)
2012年 (28)
1月 (3)
2月 (8)
3月 (6)
4月 (8)
5月 (1)
7月 (2)
2013年 (149)
1月 (12)
2月 (36)
7月 (5)
8月 (7)
9月 (22)
10月 (26)
11月 (25)
12月 (16)
2014年 (27)
1月 (13)
2月 (12)
3月 (2)
2015年 (47)
1月 (1)
2月 (6)
3月 (8)
4月 (16)
5月 (11)
6月 (4)
12月 (1)
2016年 (55)
4月 (4)
8月 (4)
9月 (6)
10月 (6)
11月 (22)
12月 (13)
2017年 (124)
1月 (10)
2月 (2)
3月 (5)
4月 (5)
5月 (10)
6月 (13)
7月 (15)
8月 (12)
9月 (17)
10月 (23)
11月 (6)
12月 (6)

アクセスカウンタ
今日:351
昨日:3,015
累計:2,056,735