二重相似の公式と折り返し図形の点の位置






2017年10月27日(Fri)
二重相似の公式と折り返し図形の点の位置
【公式】
上式のように、X軸に原点Oと点Aがある。
OA=s
である。
X軸から離れた位置の点BからX軸へ下ろした垂線のX軸上への足をCとする。そして、
AC=1,
BC=a
とする。
線分ABの延長線DAを折り目線にして原点Oに頂点を持つ図形(三角形OAD)を折り返すことでO点の位置の頂点をF点に移す。
線分OFとDAの交点をEとする。
点EのX軸へ下ろした垂線の足をGとする。
そのとき、
となることを証明せよ。
(二重相似の公式)

(解説)
 この二重相似の公式によって、
原点Oの位置の頂点を折り返した点Fの位置座標が、
で計算できる。
 二重相似の公式によって、頂点Oを折り返した位置Fの座標を計算する式の分母がcの二乗になっている。
これにより、cを計算するための根号が解消して、式が簡単になっている。

この公式の証明は、ここをクリックした先のページにあります。

リンク:
中学数学の目次




   




新着トラックバック/コメント


カレンダ
2017年10月
27
       

アーカイブ
2009年 (56)
2月 (1)
3月 (14)
4月 (30)
5月 (11)
2010年 (31)
7月 (1)
8月 (17)
9月 (4)
10月 (7)
11月 (1)
12月 (1)
2011年 (105)
1月 (10)
2月 (11)
3月 (16)
4月 (31)
5月 (4)
7月 (12)
8月 (12)
9月 (5)
11月 (3)
12月 (1)
2012年 (28)
1月 (3)
2月 (8)
3月 (6)
4月 (8)
5月 (1)
7月 (2)
2013年 (149)
1月 (12)
2月 (36)
7月 (5)
8月 (7)
9月 (22)
10月 (26)
11月 (25)
12月 (16)
2014年 (27)
1月 (13)
2月 (12)
3月 (2)
2015年 (47)
1月 (1)
2月 (6)
3月 (8)
4月 (16)
5月 (11)
6月 (4)
12月 (1)
2016年 (55)
4月 (4)
8月 (4)
9月 (6)
10月 (6)
11月 (22)
12月 (13)
2017年 (124)
1月 (10)
2月 (2)
3月 (5)
4月 (5)
5月 (10)
6月 (13)
7月 (15)
8月 (12)
9月 (17)
10月 (23)
11月 (6)
12月 (6)

アクセスカウンタ
今日:351
昨日:3,015
累計:2,056,735