連立方程式をベクトルの内積を使って解釈する






2017年09月11日(Mon)
連立方程式をベクトルの内積を使って解釈する
以下の連立方程式を考える。
この連立方程式は、以下のように定義したベクトルの内積であらわすことができる。
この連立方程式を解くと以下の解が得られる。
ここで、以下のように、ベクトルaに垂直で長さがaに等しいベクトルaと、ベクトルbに垂直で長さがbに等しいベクトルbを考える。
このベクトルaと、ベクトルbを使って、式5と6の解をベクトルであらわす。
この式7が式3と式4を満足することは、以下の式の計算で確かめることができる。
このように、式7は、式3と4を満足する、連立方程式の解をあらわす。

(補足)
 ここで、以下の式8から10を満足する連立方程式を考える。
この連立方程式の解は式11になる。

 以下のようにしてこの式11を変換する。

先ず、式10が成り立つので、以下の式12が成り立つ。
すなわち、ベクトルaとbの和のベクトルと、ベクトルaとbの差のベクトルの内積が0になり、それらのベクトルが互いに垂直である。

 ベクトルzを、互いに垂直なベクトルの要素に分解することは容易にできるので、以下でその作業を行う。
 先ず、式11の第1項を、その両ベクトルの要素に分解してあらわす。
 次に、同様にして、式11の第2項を、両ベクトルの要素に分解してあらわす。
そして、その第1項と第2項の和でベクトルzをあらわす。
結局、ベクトルzがこの式13であらわされた。
(式の変換おわり)

 この式13は、以下のように考えると、納得できる。

(1)ベクトルaと、ベクトルbは、それぞれ、ベクトルaとbを反時計回りに90度回転させたベクトルとして定義されている。
(2)そのため、式11のベクトルzは、ベクトルbとベクトルaの差のベクトルに平行になり、

(3)それは、ベクトルbとベクトルaの差のベクトルに垂直である。
(4)そのベクトルbとaの差のベクトルは、ベクトルaとbの和のベクトルに垂直であり、
(5)結局、ベクトルzは、ベクトルaとベクトルbの和のベクトルに平行である。

リンク:
高校数学の目次



   




新着トラックバック/コメント


カレンダ
2017年9月
         
11

アーカイブ
2009年 (56)
2月 (1)
3月 (14)
4月 (30)
5月 (11)
2010年 (31)
7月 (1)
8月 (17)
9月 (4)
10月 (7)
11月 (1)
12月 (1)
2011年 (105)
1月 (10)
2月 (11)
3月 (16)
4月 (31)
5月 (4)
7月 (12)
8月 (12)
9月 (5)
11月 (3)
12月 (1)
2012年 (28)
1月 (3)
2月 (8)
3月 (6)
4月 (8)
5月 (1)
7月 (2)
2013年 (149)
1月 (12)
2月 (36)
7月 (5)
8月 (7)
9月 (22)
10月 (26)
11月 (25)
12月 (16)
2014年 (27)
1月 (13)
2月 (12)
3月 (2)
2015年 (47)
1月 (1)
2月 (6)
3月 (8)
4月 (16)
5月 (11)
6月 (4)
12月 (1)
2016年 (55)
4月 (4)
8月 (4)
9月 (6)
10月 (6)
11月 (22)
12月 (13)
2017年 (115)
1月 (10)
2月 (2)
3月 (5)
4月 (5)
5月 (10)
6月 (13)
7月 (15)
8月 (12)
9月 (17)
10月 (23)
11月 (3)

アクセスカウンタ
今日:477
昨日:1,132
累計:1,998,393