連立方程式をベクトルの内積により計算する






2017年09月13日(Wed)
連立方程式をベクトルの内積により計算する
以下の連立方程式を考える。
この連立方程式は、以下のように定義したベクトルの内積の式5と6であらわすことができる。
この連立方程式を以下のようにしてベクトルを使って解く。

(解答はじめ)
 先ず、式3が成り立つので、以下の式7が成り立つ。
すなわち、ベクトルaとcの和のベクトルと、ベクトルaとcの差のベクトルの内積が0になり、それらのベクトルが互いに垂直である。

 ベクトルzを、互いに垂直なベクトルの要素に分解することは容易にできるので、以下でその作業を行う。
ベクトルaとcの和のベクトルに平行な単位ベクトルsと、
ベクトルcとaの差のベクトルに平行な単位ベクトルtを考える。
ベクトルzを、単位ベクトルsとtに平行な要素に分解してあらわす。
 ここで得られた式8は、ベクトルzの解である。

 この式8をベクトルaの要素とベクトルcの要素で整理すると、もっと複雑な、扱いにくい式になる。
ベクトルは、この式8のように、互いに垂直なベクトル毎にまとめる方が単純な式になる。
この式8が、この計算結果によるzの解をあらわす一番単純な式である。
(解答おわり)

(補足1)
 この式8が成り立つことは、以下のようにして確認できる。
問題の式5と式6は以下の式に変形できる。
式8が、この式を満足するので、式8が成り立っている。

(補足2)
 この問題のzの解は、以下の式9であらわすこともできる。
この式9は、以上とは異なる発想で解いた結果の式であり、式8と等しい式です。以下の計算によって、式8から式9が導かれます。
こうして、式8から式9が導けました。

 式8も式9も、どちらが優れている(単純な)解だと言うことが出来ない、対等な解です。
 式9は、ベクトルaに垂直なベクトルaと、ベクトルcに垂直なベクトルcを加えてあらわした、使うベクトルの数が多い式ですが、式8よりも計算がし易い式であるとも言えそうです。

この式9は、直ぐには導き出せないので、以下のように整理して公式として覚えておいてください。

【ベクトル方程式の公式1】
以下の連立ベクトル方程式の式a1とa2があるとき:
この連立ベクトル方程式の解は:
である。
なぜなら、式a1と式a2のベクトルzに式a3を代入すると、以下の通り、式a1とa2を満足するからである。
(公式おわり)

【ベクトル方程式の公式2】
以下のベクトルzとaとbがあるとき:
ベクトルaとbを反時計回りに90度回転したベクトルとベクトルbを利用して、以下の関係が成り立つ。
(公式おわり)
 
リンク:
高校数学の目次



   




新着トラックバック/コメント


カレンダ
2017年9月
         
13
21 22 23
24 25 26 27 28 29 30

アーカイブ
2009年 (56)
2月 (1)
3月 (14)
4月 (30)
5月 (11)
2010年 (31)
7月 (1)
8月 (17)
9月 (4)
10月 (7)
11月 (1)
12月 (1)
2011年 (105)
1月 (10)
2月 (11)
3月 (16)
4月 (31)
5月 (4)
7月 (12)
8月 (12)
9月 (5)
11月 (3)
12月 (1)
2012年 (28)
1月 (3)
2月 (8)
3月 (6)
4月 (8)
5月 (1)
7月 (2)
2013年 (149)
1月 (12)
2月 (36)
7月 (5)
8月 (7)
9月 (22)
10月 (26)
11月 (25)
12月 (16)
2014年 (27)
1月 (13)
2月 (12)
3月 (2)
2015年 (47)
1月 (1)
2月 (6)
3月 (8)
4月 (16)
5月 (11)
6月 (4)
12月 (1)
2016年 (55)
4月 (4)
8月 (4)
9月 (6)
10月 (6)
11月 (22)
12月 (13)
2017年 (85)
1月 (10)
2月 (2)
3月 (5)
4月 (5)
5月 (10)
6月 (13)
7月 (15)
8月 (12)
9月 (13)

アクセスカウンタ
今日:1,908
昨日:3,509
累計:1,818,803