球の体積を積分で求める






2017年08月11日(Fri)
球の体積を積分で求める
「微分・積分」の勉強

(1)積分:
 以下の問題を考えます。
【問題】 
 なぜ、半径 r の球の体積Vは、
体積V=(4π/3) r
なのか。

 この問題は、以下の様に解くことができます。

先に、半径 r の球の表面積Sは、
表面積S=4π r
であることを求めておきます。

 次に、以下の図のように、球を玉ネギ状に、厚さΔrの皮の集合と考えます。
その1つの皮の体積を計算します。 
皮の厚さをΔrとします。
球の皮の厚さΔrあたりの皮の体積ΔVが求められました。
ΔV=4π rΔr
この皮の体積の総和が球の体積Vです。
V=4π((Δr)Δr+(2Δr)Δr+(3Δr)Δr+・・・)
= 4π(Δr)(1+2+3+4・・・+n  
= 4π(Δr)n(n+(1/2))(n+1)/3
→ 4π r/3
( r=n(Δr))
 (この計算で用いた2乗の数列の和の式はここをクリックした先のページにあります

 これから、半径 r の球の体積Vは、
体積V=(4π/3) r
になることがわかりました。

 この様に、要素に分割して総和を計算することが「積分」をするということです。

リンク: 
高校数学の目次



   




新着トラックバック/コメント


カレンダ
2017年8月
   
11
   

アーカイブ
2009年 (56)
2月 (1)
3月 (14)
4月 (30)
5月 (11)
2010年 (31)
7月 (1)
8月 (17)
9月 (4)
10月 (7)
11月 (1)
12月 (1)
2011年 (105)
1月 (10)
2月 (11)
3月 (16)
4月 (31)
5月 (4)
7月 (12)
8月 (12)
9月 (5)
11月 (3)
12月 (1)
2012年 (28)
1月 (3)
2月 (8)
3月 (6)
4月 (8)
5月 (1)
7月 (2)
2013年 (149)
1月 (12)
2月 (36)
7月 (5)
8月 (7)
9月 (22)
10月 (26)
11月 (25)
12月 (16)
2014年 (27)
1月 (13)
2月 (12)
3月 (2)
2015年 (47)
1月 (1)
2月 (6)
3月 (8)
4月 (16)
5月 (11)
6月 (4)
12月 (1)
2016年 (55)
4月 (4)
8月 (4)
9月 (6)
10月 (6)
11月 (22)
12月 (13)
2017年 (105)
1月 (10)
2月 (2)
3月 (5)
4月 (5)
5月 (10)
6月 (13)
7月 (15)
8月 (12)
9月 (17)
10月 (16)

アクセスカウンタ
今日:473
昨日:2,995
累計:1,900,314