行列式の意味と計算方法






2012年02月22日(Wed)
行列式の意味と計算方法


大学への数学V&Cの勉強
行列と連立1次方程式

【行列式】
ケイリー・ハミルトンの定理の数学的意味を理解するためには、先ず、「行列式」の意味を知る必要があります。

行列式は、ベクトルが張る図形の面積や体積を計算するものです(前のページで説明)。

「行列式」は、行の数と列の数が同じ正方行列の場合に計算できるものです。
(2行2列の行列の行列式)
2行2列の行列の行列式は、
その行列の要素が構成する2つの縦ベクトルが作る平行四辺形の面積をあらわすという意味を持ちます。

2行2列の行列Ampの行列式は、
エディントンの行列式の計算記号εmpを使って、アインシュタインの縮約記法であらわして、
εmpm1p2
で計算します。
この計算に利用する行列
εmp
は、m≠pの場合の、
ε12=1,
ε21=−1
であり、それ以外の、m=Pとなる、
εmp=ε11=ε22=0
です。
行列式
εmpm1p2
は、ベクトル(A11,A21)とベクトル(A12,A22)との作る平行四辺形の面積をあらわすという意味を持ちます。

行列式を具体的に計算すると、 εmpm1p2=A1122−A2112

です。
 なお、行列式の計算方法は、行と列を入れ替えても変わらない、行と列に関して対称な式になっています。
すなわち、行列式は、以下の式でも計算できます。
εmp1m2p


以下で、行列式がベクトルの作る平行四辺形の面積を計算するものであることを説明します。

(一言で言うと、行列式の計算式を見ると、
1列目のベクトルに垂直で長さが同じベクトルと、2列目のベクトルとの内積の計算であることがわかります。
その計算は、1列目のベクトルを底辺として2列目のベクトルを斜辺とする平行四辺形の面積を計算するものです。
これで証明ができてしまいましたが、以下の証明も面白いので読んでください。)

以下のように、座標が回転しても結果が変わらないように面積の計算規則を定める点がポイントです。



X座標軸を回転させてY座標軸に重ねると、Y座標軸はX座標軸の負の方向を向いて重なる。そのため、X成分にY成分を掛け算した結果を正にした場合、このように座標を回転させても面積が変わらないようにするには、必然的に、Y成分にX成分を掛け算した結果を負にしなければならない。それで、計算規則が、行列式の計算規則に定まってしまうのです。

(3行3列の行列式)
3行3列の行列の行列式は、その行列の要素が構成する3つの縦ベクトルが作る斜方体の体積をあらわすという意味を持ちます。

3行3列の行列Ampの行列式は、
エディントンの行列式の計算記号εmprを使って、アインシュタインの縮約記法であらわして、
εmprm1p2r3
で計算します。
この計算に利用する行列(正しくは、テンソルと呼ばれる)
εmpr
は、m≠p、m≠r、p≠rの場合の、
ε123=ε231=ε312=1
ε213=ε321=ε132=−1
であり、それ以外の
εmpr=0
です。
行列式
εmprm1p2r3
は、ベクトル(A11,A21,A31)とベクトル(A12,A22,A32)とベクトル(A13,A23,A33)との作る斜方体の体積をあらわすという意味を持ちます。

行列式を具体的に計算すると、
εmprm1p2r3
=A112233
+A213213
+A311223
−A211233
−A312213
−A113223

です。


この行列式が斜方体の体積をあらわすので、3つの3次元ベクトルの先端と原点とを頂点とする三角錐の体積は、その3つの3次元ベクトルを3つの列ベクトルとする行列式の値を6分の1にした値になります。

このように、行列式は、行列を構成するベクトルが作る面積や体積をあらわします。

(n行n列の行列式)
ε(p1)(p2)(p3)・・・(pn){A(p1)1(p2)2(p3)3・・・A(pn)n
で計算します。
ここで用いた添え字がn個の行列(正式には、添え字2つのものを行列と呼び、添え字3つ以上のものはテンソルと呼ばれる)
ε(p1)(p2)(p3)・・・(pn)は、以下の値を持ちます。
ε(1)(2)(3)・・・(n)=1
この添え字の位置を交換すると(−1)倍になる。例えば、1と2を交換すると、
ε(2)(1)(3)・・・(n)=−1
これらの添え字の位置を交換した要素以外は全て0です。例えば、
ε(1)(1)(3)・・・(n)=0

【行列式は行と列を入れ替えても結果が同じ】
 行列式は、計算の元になる行列の行と列に関して対称な計算式です。そのため、行と列を入れ替えた行列でも行列式は同じ値になります。

【行列式が0になる行列の性質】
 行列を列ベクトルに分割したとき、その列ベクトルが独立でなく、1つの列べクトルが他の列ベクトル(重みつき和)であらわせる場合は、行列式が0になります。

 (2行2列の行列の場合)
 例えば、2行2列の行列の場合は、行列式が0になる場合は、行列の2つの列ベクトルが、平行な2つのベクトルの場合です。

 この平行な2つのベクトルで構成する平行四辺形の面積は0です。
行列式はその面積をあらわすものなので、その行列式は0になります。

 (3行3列の行列の場合)
 3行3列の行列の場合は、行列式が0になる場合は、行列を構成する3つのベクトルが、同一平面上にある場合です。

 その3つのベクトルで構成される斜方体は、その平面上の高さが0であるので、体積が0です。
行列式はその体積をあらわすものなので、その行列式は0になります。

行列式は、そのうちの2つの行が同じ行ベクトルであると、行列式が0になります。2つの列が同じ列ベクトルの場合も0になります。

また、行列式が0になる行列は、あるベクトルを0ベクトルに変換する性質があります。後に説明する内容ですが、そのベクトルは、その行列の、値が0の固有値に対する固有ベクトルです。
そして、その固有ベクトルには、次のページで説明する余因子行列の列ベクトルが比例します。

なお、以下の行列式の積の計算は間違えやすい。






リンク:
ミラーサイト
追加講:三角形の面積と行列式
高校数学の目次



   




新着トラックバック/コメント


カレンダ
2012年2月
     
22
     

アーカイブ
2009年 (56)
2月 (1)
3月 (14)
4月 (30)
5月 (11)
2010年 (31)
7月 (1)
8月 (17)
9月 (4)
10月 (7)
11月 (1)
12月 (1)
2011年 (105)
1月 (10)
2月 (11)
3月 (16)
4月 (31)
5月 (4)
7月 (12)
8月 (12)
9月 (5)
11月 (3)
12月 (1)
2012年 (28)
1月 (3)
2月 (8)
3月 (6)
4月 (8)
5月 (1)
7月 (2)
2013年 (149)
1月 (12)
2月 (36)
7月 (5)
8月 (7)
9月 (22)
10月 (26)
11月 (25)
12月 (16)
2014年 (27)
1月 (13)
2月 (12)
3月 (2)
2015年 (47)
1月 (1)
2月 (6)
3月 (8)
4月 (16)
5月 (11)
6月 (4)
12月 (1)
2016年 (55)
4月 (4)
8月 (4)
9月 (6)
10月 (6)
11月 (22)
12月 (13)
2017年 (43)
1月 (10)
2月 (2)
3月 (5)
4月 (5)
5月 (10)
6月 (11)

アクセスカウンタ
今日:1,243
昨日:2,916
累計:1,582,574